Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (n+2) \(⋮\) (n-1)
vì (n-1)\(⋮\) (n-1)
=>(n+2)-(n-1)\(⋮\left(n-1\right)\)
=>(n+2-n+1)\(⋮\) (n-1)
=> 3\(⋮\) (n-1)
=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}
ta có bảng
n-1 | -1 | 1 | -3 |
3 |
n | 0 | 2 | -2 | 4 |
loại |
vậy n\(\in\) { 0;2;4}
b) \(\left(2n+7\right)⋮\left(n+1\right)\)
vì\(\left(n+1\right)⋮\left(n+1\right)\)
=>\(2\left(n+1\right)⋮\left(n+1\right)\)
=> \(\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)
=>\(5⋮\left(n+1\right)\)
=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA CÓ BẢNG
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
vậy \(n\in\left\{0;4\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có:
17 chia hết cho n-3
=>n-3 thuộc Ư(17)
=>Ư(17)={-1;1;-17;17}
Ta có bảng sau:
n-3 | -1 | 1 | -17 | 17 |
n | 2 | 4 | -14 | 20 |
KL | tm | tm | loại | tm |
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : n + 6 chia hết cho n + 1
=> n + 1 + 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5) = {1;5}
=> n = {0;4}
Ta có :
n + 6 chia hết cho n + 1
=> n + 1 + 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư ( 5 ) = { 1;5 }
=> n = { 0 ; 4 }
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,n+6⋮n+3\)
\(\Rightarrow n+3+3⋮n+3\)
mà \(n+3⋮n+3\Rightarrow3⋮n+3\)
\(\Rightarrow n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Với n + 3 = 1 => n = -2
n + 3 = -1 => n = -4
n +3 = 3 = > n= 0
n+ 3 = -3 => n= -6
\(\Rightarrow n\in\left\{-2;-4;0;-6\right\}\)
b, \(2n+9⋮n+2\)
\(2.n+2+7⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\)
\(\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
........
bn lm như trên
\(c,2n+7⋮n+1\)
\(\Rightarrow2n+1+6⋮n+1\)
mà \(2.\left(n+1\right)⋮n+1\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)=\left\{1;-1;2;-2;6;-6\right\}\)
........ như phần vừa nãy
\(d,n+3⋮n-1\)
\(\Rightarrow n+4-1⋮n-1\)
\(\Rightarrow n-1+4\)
mà \(n-1⋮n-1\Rightarrow4⋮n-1\)
\(\Rightarrow n\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
......
a)
\(n⋮n-2\Leftrightarrow n-2+2⋮n-2\Leftrightarrow2⋮n-2\)
Do đó \(n-2\inƯ\left(2\right)=\left\{1;2\right\}\)
Suy ra n=3 và n=4
b)
21 chia hết cho 2n+5 nên \(2n+5\inƯ\left(21\right)=\left\{1;3;7;21\right\}\)
Vì n thuộc n nên \(2n+5\in\left\{7;21\right\}\)
Tìm được n=1 và n=8.
Phần c tương tự nha bạn
1 và 3 cũng thuộc N mà