Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{6}{6}=1\)
\(\frac{13}{14}+\frac{14}{8}=\frac{13.4}{14.4}+\frac{14.7}{8.7}=\frac{52}{56}+\frac{98}{56}=\frac{150}{56}\simeq2,68\)
Như vậy: \(1\le x\le2,68\)
Mà x thuộc N => x=1 và x=2
Đáp số: x=1 và x=2
Bài 1:
1: =-5/24+16/27+3/4
=-5/24+18/24+16/27
=13/24+16/27
=117/216+128/216=245/216
2: =-1/3+1/3+6/7=6/7
3: \(=\dfrac{1}{2}-\dfrac{7}{12}+\dfrac{1}{2}=1-\dfrac{7}{12}=\dfrac{5}{12}\)
4: \(=-\dfrac{5}{8}+\dfrac{14}{25}-\dfrac{6}{10}=\dfrac{-125+112-120}{200}=\dfrac{-133}{200}\)
Câu 2:
(8^7)/(2^18)
=(2^21)/(2^18)
=2^3=8 không chia hết cho 14 nhé
a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )
\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)
Vậy \(N< \frac{1}{4}\)
b) \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)
\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)
\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)
Vậy \(P< 1\)
=>1<=x<=26/8+14/8=40/8=5
=>\(x\in\left\{1;2;3;4;5\right\}\)