Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n^2-n+2⋮2n+1\)
\(2n^2+n-2n-1+3⋮2n+1\)
\(n\left(2n+1\right)-\left(2n+1\right)+3⋮2n+1\)
\(\left(2n+1\right)\left(n-1\right)+3⋮2n+1\)
Vì \(\left(2n+1\right)\left(n-1\right)⋮2n+1\)
\(\Rightarrow3⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow n\in\left\{0;1;-1;-2\right\}\)
Vậy.........
Ta có :
\(2n^2-n+2=-n.\left(-2n+1\right)+2\)
Vì -2n + 1 chia hết cho 2n + 1 nên -n.(-2n + 1) cũng chia hết cho 2n + 1
=> 2 chia hết cho 2n + 1
Vì n thuộc Z nên 2n + 1 thuộc {-2;-1;1;2}
=> n thuộc {-1; 0}
Ta có: \(2n^2-n-1=2n^2+3n-4n-6+5=n\left(2n+3\right)-2\left(2n+3\right)+5\)
Vì \(n\left(2n+3\right)\)và \(-2\left(2n+3\right)\)chia hết cho \(2n+3\) nên để \(2n^2-n-1\)chia hết cho \(2n+3\) thì \(5\)phải chia hết cho \(2n+3\), tức là \(2n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Với \(2n+3=1\)thì \(n=-1\)
Với \(2n+3=-1\) thì \(n=-2\)
Với \(2n+3=5\)thì \(n=1\)
Với \(2n+3=-5\) thì \(n=-4\)
Vậy, để đa thức \(2n^2-n-1\) chia hết cho đa thức \(2n+3\) thì \(n=\left\{-2;-1;1;-4\right\}\) và \(n\in Z\)
TÌM n thuộc Z để 2n2 – n + 2 chia hết 2n + 1.
– | 2n2– n + 22n2 + n | 2n + 1 | |
n – 1 | |||
– | O – 2n + 2– 2n – 1 | ||
3 |
Phép chia hết khi : 2n + 1 có giá trị là U(3) ={ ±1; ±3}
- khi : 2n + 1 = 1 => n = 0
- khi : 2n + 1 = -1 => n = -1
- khi : 2n + 1 = 3 => n = 1
- khi : 2n + 1 = -3 => n =-2
Vậy : n = 0, – 1, 1, – 2
Em nhấn vào link màu xanh: Câu hỏi của Nguyễn Khánh Linh - Toán lớp 8 - Học toán với OnlineMath