Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : n+7 \(⋮\)n+2
\(\Rightarrow\)n+2+5\(⋮\)n+2
mà n+2\(⋮\)n+2
\(\Rightarrow\)5\(⋮\)n+2
\(\Rightarrow n+2\in_{ }\){-5;-1;1;5}
\(\Rightarrow n\in\){-7;-3;-1;2}
b,c,d tương tự
a) Ta có: n+4 chia hết cho 4.
Suy ra 4 chia hết cho n.Vậy n=1;2
b, 3n+7 chia hết cho n => 7 chia hết n
Vậy n=1
còn nhiều quá
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Vì 3 n chia hết cho (5-2n)
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}
Mặt khác 5-2n nhỏ hơn hoặc bằng 5
5-2n thuộc {-15,-5,-3,-1,1,3,5}
=>N thuộc { 10,5,4,3,2,1,0}
Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n
=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}
Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5
=>5-2n€{-15,-5,-3,-1,1,3,5}
=>N€{10,5,4,3,2,1,0}
Mik làm câu a) cho nhoa :)
a) n -1 \(⋮\) n
=> -1 \(⋮\)n
=> n \(\in\)Ư ( -1 ) = { 1 ; -1 }
Vậy : ...
Học tốt nha bn!
Câu a) dễ rồi bạn tự làm nha :3
\(b)\) Ta có :
\(\left|n-1\right|< 2\)
Mà \(\left|x-1\right|\ge0\)
\(\Rightarrow\)\(\left|x-1\right|\in\left\{0;1\right\}\)
\(\Rightarrow\)\(\hept{\begin{cases}x-1=0\\x-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(x\in\left\{1;2\right\}\)
\(c)\) \(\left|3-n\right|+\left|n+7\right|\)
Vì \(\left|3-n\right|\ge0;\left|n+7\right|\ge0\)
\(\Rightarrow\)\(\orbr{\begin{cases}3-n=0\\n+7=0\end{cases}\Rightarrow\orbr{\begin{cases}n=3\\n=-7\end{cases}}}\)
Vậy \(n\in\left\{3;-7\right\}\)