K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2020

Ta thấy: \(2017^{2016}\equiv1\)(mod 6)

Từ đó: (1 <= i <= k) \(\text{Σ}n_i\equiv1\)(mod 6)

Dễ chứng minh: \(\left(6k+m\right)^3\equiv m\equiv6k+m\)(mod 6) với 0<=m<=6

Từ đó ta có: \(x^3\equiv x\)(mod 6) với x là số tự nhiên

Vậy \(\text{Σ}n_i^3\equiv\text{Σ}n_i\equiv1\)(mod 6)

Vậy \(\text{Σ}n_i^3\)chia 6 dư 1

22 tháng 7 2020

ta có: \(N=2017^{2016}\)

xét \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên a3-a chia hết cho 6 với mọi a

đặt N=\(n_1+n_2+...+n_k=2017^{2016}\)

\(\Rightarrow S-N=\left(n_1^5+n_2^3+....+n_k^3\right)-\left(n_1+....+n_k\right)=\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+....+\left(n_k^3-n_k\right)\)

\(\Rightarrow S-N⋮6\)

=> S và N cùng số dư khi chia cho 6

thấy 2017 chia 6 dư 1

20172016 chia 6 dư 1 => N chia 6 dư 1

=> S chia 6 dư 1

30 tháng 8 2016

còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)

mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa 

30 tháng 8 2016

lâu nay lười giải quá nhưng thôi mình giải cho bạn.

câu 1: ta gọi 2 số đó là a và b. Ta có:

\(a=x^2+y^2\)

\(b=n^2+m^2\)

=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)

bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)