Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2n + 1 + 12 -2n =13
6-n(ư)13 = -1; 1; -13 ; 13
n = 7; 19
b) tương tự, k làm dc mk sẽ làm tiếp
b) 3x - 6 - (8x + 4) - (10x + 15) = 50
=> 3x - 6 - 8x - 4 - 10x - 15 = 50
=> (3x - 8x - 10x) = 6+ 4 + 15 + 50
=> -15x = 75 => x = 75 : (-15) = -5
c) => 2x - 3 = 2 - x hoặc 2x - 3 = - (2 - x) (Vì 2 số có giá trị tuyệt đối bằng nhau thì chings bằng nhau hoặc đối nhau)
+) nếu 2x - 3 = 2 - x => 2x+ x = 2 + 3 => 3x = 5 => x = 5/3
+) nếu 2x - 3 = -(2 - x) => 2x - 3 = -2 + x => 2x - x = -2 + 3 => x = 1
Vậy x = 5/3 hoặc x = 1
a) (n-1)n+11-(n-1)n=0
(n-1)n(n-1)11-(n-1)n=0
(n-1)n[(n-1)11-1]=0
(n-1)n=0 hoặc (n-1)11-1=0
n-1=0 hoặc (n-1)11 =1
n=1 hoặc n-1 =1
n=1 hoặc n =2
a,
- Theo đề bài ta có:
(8x-1)2n-1 = 52n-1
=> 8x-1 = 5
8x = 6
x = \(\dfrac{6}{8}\)= \(\dfrac{3}{4}\)
- Vậy x = \(\dfrac{3}{4}\)
b,
- Ta có:
(x - 7)x+1 - (x - 7)x+11 = 0
(x - 7)x . (x - 7) - (x - 7)x . (x - 7)11 = 0
(x - 7)x . [(x - 7) - (x - 7)11] = 0
=> (x - 7)x = 0 hoặc [(x - 7) - (x - 7)11] = 0
- TH1: (x - 7)x = 0
=> x - 7 = 0
=> x = 7
- TH2:
[(x - 7) - (x - 7)11] = 0
=> x - 7 = (x -7)11
=> x - 7 = 1 hoặc x - 7 = 0
+ Nếu x - 7 = 1
x = 8
+ Nếu x - 7 = 0 (TH1)
- Vậy x = 7 hoặc x = 8
c, - Theo đề bài ta có:
\(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
- Thấy \(\left(\dfrac{2}{3}\right)^6=\left(\dfrac{2}{3}\right)^{2\cdot3}\)= \(\left(\dfrac{4}{9}\right)^3\)
=> \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{4}{9}\right)^3\)
=> \(x-\dfrac{2}{9}=\dfrac{4}{9}\)
=> \(x=\dfrac{4}{9}-\dfrac{2}{9}\)
\(x=\dfrac{2}{9}\)
- Vậy \(x=\dfrac{2}{9}\)
a.\(2n^2-3n+1=2n\times\left(n-1\right)-\left(n-1\right)=\left(2n-1\right)\times\left(n-1\right)\Rightarrow2n-1⋮n-1\)
\(\Rightarrow2\left(n-1\right)+1⋮n-1\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\Rightarrow n=2\)
b.Tách tương tự nha
\(2n^2-3n+1=\left(2n^2-2n\right)-n+1=2n\left(n-1\right)-n+1\)\(\Rightarrow-n+1⋮n-1\Rightarrow-\left(n-1\right)⋮n-1\)
vậy với mọi x thuộc N đều t/m
b) tương tự nha
\(2020^{\left(n-20\right).\left(n+11\right)}=1\)
\(\Leftrightarrow\left(n-20\right)\left(n+11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n-20=0\\n+11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}n=20\\n=-11\left(loai\right)\end{cases}}}\)
Vây n=20