Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\frac{4n^3-4n^2-n+4}{2n+1}=\frac{\left(2n+1\right)\left(2n^2-3n+1\right)+3}{2n+1}\)\(=2n^2-3n+1+\frac{3}{2n+1}\)
để \(4n^3-4n^2-n+4⋮2n+1\) thì \(2n+1\) là ước của \(3\) nên \(2n+1=\)\(\left(1;-1;3;-3\right)\)cái này phải là dấu ngoặc nhọn nha mình k ghi đc nên cậu tự sửa nhá
TH1: với \(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)
TH2: với \(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
TH3: với \(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)
TH4: với \(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)
<=> A = \(\frac{\left(4n+8\right)-1}{n+2}\)(n khác 2)
<=> A = \(\frac{4\left(n+2\right)-1}{n+2}\)
<=> A = 4 - \(\frac{1}{n+2}\)
vì 4 thuộc Z . để A thuộc Z
=> \(\frac{1}{n-2}\)thuộc Z
=>n-2 là ước của 1
mà n thuộc Z => n - 2 thuộc Z, n khác 2
=> n - 2 là ước nguyên của 1
ta có bảng
n-2 -1 1
n 1(thỏa mãn) 3(thỏa mãn)
kl n thuộc tập hợp 1, 3
A=(n2-n) - (3n-3)= (n-1)(n-3) là số nguyên tố thì
n-1=1;-1 và n-3 là số nguyên tố => n= 2;0 khi đó n-3=-1;3 là số nguyên tố => n=0 là thỏa mãn
hoặc n-3=1;-1 và n-1 là số nguyên tố => n=4;2 khi đó n-1=3;1 là số nguyên tố => n=4 là thỏa mãn
Vậy n= 0 hoặc n=4
Answer:
Để mà \(3n^2-4n-2⋮n+1\left(n\ne-1\right)\)
\(\Rightarrow3n^2+3n-7n-7+5⋮n+1\)
\(\Rightarrow3n.\left(n+1\right)-7.\left(n+1\right)+5⋮n+1\)
Mà: \(\hept{\begin{cases}3n.\left(n+1\right)⋮n+1\\7.\left(n+1\right)⋮n+1\end{cases}}\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)
để \(4n^2+1\)lm sao bạn?
Là số nguyên tố nhé