Tìm  n   ∈   N *...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

1.Ta có

   n4 + 4 = n4 + 4n2 + 4 – 4n2

             = (n2 + 2 )2 – (2n)2

            = (n2 + 2 – 2n )(n2 + 2 + 2n)

Vì n4 + 4 là số nguyên tố nên  n2 + 2 – 2n = 1 hoặc  n2 + 2 + 2n = 1

   n2 + 2 + 2n > 1 vậy  n2 + 2 – 2n = 1 suy ra n = 1

Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố

Vậy với n = 1 thì  n4 + 4  là số nguyên tố./

2.Ta có :

n2003 + n2002 + 1 = n2(n2001 – 1) + n(n2001 – 1) + n2 + n + 1

Với n > 1 ta có :

Do đó  

 Mà n2 + n + 1 > 1 nên  n2003 + n2002 + 1  là hợp số

Với n = 1 ta có

       n2003 + n2002 + 1 = 12003 + 12002 + 1 = 3 là số nguyên tố .

4 tháng 4 2015

a) số nguyên tố nhỏ nhất là 2

 

3 tháng 9 2015

a) Vì 132 là số chẵn =>132 là tổng của 3 số nguyên tố =>1 trong 3 số phải la số chẵn => số chẵn đó bằng 2 mà là số ntố nhỏ nhất nên số nhỏ nhất đó là 2.

c)xét trường hợp p=2=> p+10=12 là hợp số loại

 Xét trường hợp p= 3=> p+10= 13;p+20=23 đều là hợp số.

Xét trường hợp p>3 => p có 1 trong 2 dạng 3k+1;3k-1

   với p= 3k +1=> p+20= 3k+21 chia hết cho 3

   với p=3k-1=> p+10= 3k+9 chia hết cho 3

vậy p=3 thì p+10;p+20 đều là số ntố.

19 tháng 3 2017

Câu 1:

Để B là số nguyên

=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}

Ta có bảng:

n-315-1-5
n482-2
B51-5

-1

=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)

25 tháng 1 2021

Ta có: \(n^3-n^2+n-1\)

\(=n^2\left(n-1\right)+\left(n-1\right)\)

\(=\left(n-1\right)\left(n^2+1\right)\)

Ta thấy \(n-1< n^2+1\) nên điều kiện cần để số trên là nguyên tố là: \(n-1=1\Rightarrow n=2\)

\(\Rightarrow n^3-n^2+n-1=5\) thỏa mãn

G/S ngược lại \(n-1\ne1\) thì \(n^2+1\ne1\)

\(\Rightarrow\left(n-1\right)\left(n^2+1\right)\) không là số nguyên tố (vô lý)

Vậy n = 2

25 tháng 1 2021

Với n = 2 

=> n3 - n2 + n - 1 = 5 (tm)

Với n > 2 

=> \(\orbr{\begin{cases}n=2k+1\\n=2k\end{cases}}\left(k\inℕ^∗\right)\)

Với n = 2k + 1 khi đó : n3 - n2 + n - 1 

=  (n3 - n2) + (n - 1)

= n2(n - 1) + (n - 1)

= (n - 1)(n2 + 1)

= (2k + 1 - 1)[(2k + 1)2 + 1]

= 2k[(2k + 1)2 + 1] \(⋮\)2 (loại)

Với n = 2k 

=> n3 - n2 + n - 1 

= (n - 1)(n2 + 1)

= (2k - 1)[(2k)2 + 1]

= (2k - 1)(4k + 1) \(⋮2k-1\)(loại)

=> n = 2 là giá trị cần tìm 

11 tháng 11 2015

a, n=1

b, không có n

c, chưa ra

11 tháng 11 2015

a)Ta có: n2+18n=n.(n+18)

Ư(n2+18n)={1,n,n+18,n.(n+18)}

Để n2+18n là số nguyên tố

=>Ư(n2+18n)={1,n.(n+18)}

=>n=1 hoặc n+18=1

Vì n+18>n

=>n=1

Vậy n=1

3 tháng 12 2018

Đặt \(ƯC\left(3n^2+3n+4;n^2+n+1\right)=d\)

\(\Rightarrow3n^2+3n+4⋮d,n^2+n+1⋮d\)

\(\Rightarrow3n^2+3n+4-3\left(n^2+n+1\right)⋮d\)

\(\Rightarrow3n^2+3n+4-3n^2-3n-3⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy với \(n\inℕ\) thì \(3n^2+3n+4\) và \(n^2+n+1\) nguyên tố cùng nhau.

26 tháng 3 2021

Mấ bài này dễ ý mà cứ áp dụng công thức là ra