\(\frac{1}{3}_{ }-\frac{1}{n+4}=\frac{224}{673}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2016

\(\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)

\(\frac{1}{n+4}=\frac{1}{3}-\frac{224}{673}\)

\(\frac{1}{n+4}=\frac{1}{2019}\)

\(n+4=1:\frac{1}{2019}\)

\(n+4=2019\)

\(n=2019-4\)

\(n=2015\)

20 tháng 5 2017

\(A=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)

\(4A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{15}+...+\frac{1}{n^2}-\frac{1}{4n}=\frac{56}{673}\)

\(\Rightarrow4A=\)

20 tháng 5 2017

\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)

\(\Rightarrow\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n\left(n+4\right)}=\frac{56}{673}\)

\(\Rightarrow\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}\right)=\frac{56}{673}\)

\(\Rightarrow\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{n}-\frac{1}{n+4}\right)=\frac{56}{673}\)

\(\Rightarrow\frac{1}{4}\left(\frac{1}{3}-\frac{1}{n+4}\right)=\frac{56}{673}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{n+4}=\frac{56}{673}:\frac{1}{4}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)

\(\Rightarrow\frac{1}{n+4}=\frac{1}{3}-\frac{224}{673}\)

\(\Rightarrow\frac{1}{n+4}=\frac{1}{2019}\)

=> n + 4 = 2019 

     n = 2019 - 4

     n = 2015

28 tháng 8 2016

\(\frac{x-1}{9}=\frac{8}{3}\Rightarrow\)\(\frac{x-1}{9}=\frac{24}{9}\Rightarrow x-1=24\)

                                        x=24+1

                                        x=25

Vậy x=25

 

28 tháng 8 2016

\(\frac{x-1}{9}=\frac{8}{3}\)

\(\Leftrightarrow\left(x-1\right):9=\frac{8}{3}\)

\(\Leftrightarrow\left(x-1\right)=24\)

\(\Leftrightarrow x=24+1\)

\(\Leftrightarrow x=25\)

 

 

 

 

11 tháng 6 2016

\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)

<=> \(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}=\frac{56}{673}\)

<=> \(4.\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}\right)=4.\frac{56}{673}\)

<=> \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}=\frac{224}{673}\)

<=> \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+4}=\frac{224}{673}\)

<=> \(\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)

<=> \(\frac{n+4-3}{3.\left(n+4\right)}=\frac{224}{673}\Leftrightarrow\frac{n}{3.\left(n+4\right)}=\frac{224}{673}\)

<=> 673n = 224.3(n+4)

<=> 673n = 224.3.n + 224.3.4

<=> 673n = 672n + 2688

<=> 673n - 672n = 2688

<=> n = 2688

15 tháng 1 2017

Bạn làm sai rồi , phải là n=2015

25 tháng 2 2018

Để \(A\) là số nguyên thì \(\left(n+1\right)⋮\left(n-3\right)\)

Ta có : 

\(n+1=n-3+4\) chia hết cho \(n-3\) \(\Rightarrow\) \(4⋮\left(n-3\right)\) \(\left(n-3\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Suy ra : 

\(n-3\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(4\)\(2\)\(5\)\(1\)\(7\)\(-1\)

Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)

11 tháng 12 2016

\(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2003}{2004}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)\(\Rightarrow\frac{1}{n+1}=\frac{1}{4008}\)\(n+1=4008\Rightarrow n=4007\)

 

 

11 tháng 12 2016

cảm ơn

7 tháng 6 2016

a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{a\left(n+a\right)}\) (đpcm)

b) \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(B=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(1-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)

20 tháng 6 2020

1) Để phân số \(\frac{14n+3}{21n+5}\) là PSTG thì

ƯC(14n+3, 21n+5)={-1,1}

Gọi d là UC của 14n+3 và 21n+5

⇒14n+3⋮d

21n+5⋮d

⇒3(14n+3)⋮d

2(21n+5)⋮d

⇒42n+9⋮d

42n+10⋮d

⇒42n+9-(42n+10)⋮d

⇒42n+9-42n-10⋮d

⇒-1⋮d

⇒d={1, -1)

⇒ƯC(14n+3, 21n+5)={-1,1}

Vậy phân số................

2)\(\text({\frac{1}{4}.x+\frac{3}{4}.x})^{2}\)=\(\frac{5}{6}\)

\(\text((\frac{1}{4}+\frac{3}{4}).x)^2=\frac{5}{6}\)

\(\text{(1x)}^2\)=\(\frac{5}{6}\)

⇒x=....(mình ko tính dc)

Vậy x∈ϕ

3) A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)

=\(\frac{3.8.15...899}{4.9.16...900}\)

=\(\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)

=\(\frac{1.2.3...29}{2.3.4...30}.\frac{3.4.5....31}{2.3.4...30}\)

=\(\frac{1}{30}.\frac{31}{2}\)

=\(\frac{31}{60}\)

20 tháng 6 2020

gọi UCLN ( 14n+ 3 ; 21n +5 ) là d

=> 14n+ 3⋮d và 21n +5⋮d

=> 42n + 9⋮d và 42n + 10⋮d

=> 42n + 10 - (42n + 9) ⋮ d

=> 42n + 10 - 42n - 9⋮ d

=> 1⋮ d

=> p/s ...là phân số tối giản