\(\in\)N để phân số sau tối giản: \(\frac{n+19}{n-2}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

Ta có :

\(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)

để phân số trên tối giản thì \(\frac{21}{n-2}\in Z\)

\(\Rightarrow21⋮n-2\)

\(\Rightarrow n-2\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)

21 tháng 8 2015

Để D nguyên thì

8n-5 chia hết cho 3n+2

=> 24n-15 chia hết cho 3n+2

=> 24n+16-31 chia hết cho 3n+2

Vì 24n+16 chia hết cho 3n+2

=> -31 chia hết cho 3n+2

=> 3n+2 thuộc Ư(31)

3n+2n
1-1/3
-1-1
3129/3
-31-11

Mà n nguyên

=> n \(\in\){-1; -11}


Gọi ƯCLN(8n-5; 3n+2) là d. Ta có:

8n-5 chia hết cho d => 24n-15 chia hết cho d

3n+2 chia hết cho d => 24n+16 chia hết cho d

=> 24n+16-(24n-15) chia hết cho d

=> 31 chia hết cho d

Giả dử phân số rút gọn được

=> 3n+2 chia hết cho 31

=> 3n+2+31 chia hết cho 31

=> 3n+33 chia hết cho 31

=> 3(n+11) chia hết cho 31

=> n+11 chia hết cho 31

=> n = 31k-11

KL: Để D tối giản thì n \(\ne\)31k-11

10 tháng 6 2015

umk đây này

Phân số đã cho có dạng: a/2+a+n với a=1,2,3,...,2004.

UCLN(a;2+a+n)=1 do đó a;2+a+n nguyên tố cùng nhau. Do vậy 2+n là số nguyên tố với n nhỏ nhất

Do đó 2+n=2003 (Vì 2003 là số nguyên tố)

Vậy n=2001

10 tháng 6 2015

bài này hình như có bạn hỏi rùi, n = 2001

16 tháng 8 2019

Mk giải theo cách mk hiểu chứ ko phải chặt chẽ lắm đâu nha !!!

Với \(k\inℕ\)thì \(k\)có thể bằng \(0\)

\(\Rightarrow kn\)có thể bằng \(0\)

\(\Rightarrow\frac{m}{kn+m}=\frac{m}{0+m}=\frac{m}{m}=1\)

\(\Rightarrow\frac{m}{kn+m}\)ko phải phân số tối giản

Vậy để \(\frac{m}{kn+m}\)là phân số tối giản thì \(k\inℕ^∗\)

Chắc vậy !!! 

20 tháng 4 2017

Gọi d thuộc Z. Ta thấy n +13 chia hết cho d , n-2 chia hết cho d. Vậy d là ước chung của n +13 và n -2..

>>  N +13 - N -2 SẼ CHIA HẾT CHO d.

>> 11 sẽ chia hết cho d.

>> d = 1 hoặc 11. 

Tìm n mà bạn

18 tháng 7 2019

1,

x-2/ 15=27/15

=>x-2=27

x=29

18 tháng 7 2019

#)Giải :

1.

\(\frac{x-2}{15}=\frac{9}{5}\Leftrightarrow x-2=\frac{9}{5}.15=27\Leftrightarrow x=29\)

\(\frac{2-x}{16}=\frac{-4}{x-2}\Leftrightarrow2-2x-2=\left(-4\right).16=-64\Leftrightarrow x\left(2-2\right)=-64\Leftrightarrow x.0=64\)

P/s : Câu thứ hai cứ sao sao ý 

18 tháng 8 2017

Để  \(\frac{6n+8}{2n-1}\)tối giản thì \(\frac{11}{2n-1}\)tối giản \(\Leftrightarrow\)ƯC(11,2n-1)=1,-1

\(\Rightarrow\)2n-1 không chia hết 5\(\Rightarrow\)2n-1\(\ne\)11k(k\(\in\)Z, k\(\ne\)0)

\(\Rightarrow\)n\(\ne\)11k+1:2

17 tháng 7 2016

Ta có:

1/n + 3 = 1 / 1 + (n + 2) 

2/n + 4 = 2 / 2 + (n + 2)

3/n + 5 = 3 / 3 + (n + 2)

....

2001/n + 2003 = 2001 / 2001 + (n + 2)

2002/n + 2004 = 2002 / 2002 + (n + 2)

Ta thấy các phân số trên đều có dạng a/a + (n + 2)

Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau

=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau

Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003

=> n = 2003 - 2 = 2001

Vậy n = 2001

nhớ k nha

17 tháng 7 2016

Ta có:

1/n + 3 = 1 / 1 + (n + 2) 

2/n + 4 = 2 / 2 + (n + 2)

3/n + 5 = 3 / 3 + (n + 2)

....

2001/n + 2003 = 2001 / 2001 + (n + 2)

2002/n + 2004 = 2002 / 2002 + (n + 2)

Ta thấy các phân số trên đều có dạng a/a + (n + 2)

Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau

=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau

Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003

=> n = 2003 - 2 = 2001

Vậy n = 2001