Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi n>1, ta có :
A=13+23+...+n3 = (1+2+...+n)2
Vì vậy A luôn là số chính phương
Ta có:
\(B=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x^2+xy+xz\right)\left(x^2+xy+yz+xz\right)+y^2z^2\)
Đặt \(x^2+xy+xz=a\)
Khi đó: B trở thành:
\(4a\left(a+yz\right)+y^2z^2\)
\(=\left(yz+2a\right)^2\)
Hay \(B=\left(2x^2+2xy+2xz+yz\right)^2\)là số chính phương
đề bạn sai rồi nha thử thay n= 1 hoặc 3 vào thì A ko là SCP!
\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
\(\Rightarrow x^2+y^2=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)
\(\Rightarrow\left(x^2+y^2\right)_{min}=\dfrac{9}{2}\) khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)
Do \(n^2+17\)là số chính phương nên
\(n^2+17=a^2\left(a\inℕ\right)\)
\(\Rightarrow n^2-a^2=-17\)
\(\Rightarrow\left(n-a\right)\left(n+a\right)=1\cdot\left(-17\right)=\left(-17\right)\cdot1=\left(-1\right)\cdot17=17\cdot\left(-1\right)\)