Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm n ∈ N để:( 4n+ 3) và 2n+ 3 nguyên tố cùng nhau và 2n + 3 4n + 3 tối giảm. b) 7n+ 13 và 2n+ 4 nguyên tố cùng nhau. b, giả sử d = ( 7n +13 ; 2n + 4) ta có 7n + 13 = 3.( 2n +4 ) + (n + 1) 2n + 4 = 2.(n +1) + 2 => d = ( n +1; 2) Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1 => n + 1 không chia hết cho 2 => n+ 1 = 2k + 1 , k thuộc N => n = 2k Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau
b, giả sử d = ( 7n +13 ; 2n + 4)
ta có 7n + 13 = 3.( 2n +4 ) + (n + 1)
2n + 4 = 2.(n +1) + 2
=> d = ( n +1; 2)
Để 7n + 13 và 2n + 4 là số nguyên tố cùng nhau thì d = 1
=> n + 1 không chia hết cho 2
=> n+ 1 = 2k + 1 , k thuộc N
=> n = 2k
Vậy với n = 2k thì 7n + 13 và 2n + 4 nguyên tố cùng nhau
Giải:
Gọi \(d=UCLN\left(7n+10;5n+7\right)\)
Ta có:
\(7n+10⋮d\Rightarrow2\left(7n+10\right)⋮d\Rightarrow14n+20⋮d\)
\(5n+7⋮d\Rightarrow3\left(5n+7\right)⋮d\Rightarrow15n+21⋮d\)
\(\Rightarrow15n+21-14n-20⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow d=UCLN\left(7n+10;5n+7\right)=1\)
\(\Rightarrow\) 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
Gọi ƯCLN7n+10 ; 5n+7 là d
Theo đề ra ta có :
\(\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}\)
=> \(5\left(7n+10\right)-7\left(5n+7\right)⋮d\)
=> \(45n+50-\left(45n+49\right)⋮d\)
=> 1⋮ d
=> d = 1
Vậy (7n+10 ; 5n + 7 ) = 1
Gọi d = UCLN(14n+3; 7n+4)
Ta có: n\(\in\)N; (14n+3; 7n+4) chia hết cho d
[2(7n+4)-14n+3] chia hết cho d
=>14n+8-14n+3 chia hết cho d
=> 5 chia hết cho d
=> d=1;5
Vậy hai số ...................... là hai số nguyên tố cùng nhau
Đặt (9n+24, 2n+4) =d
=> 9n+24 chia hết cho d => 18n +48 chia hết cho d
2n +4 chia hết cho d => 18n +36 chia hết cho d
=> 12 chia hết cho d
=> d thuộc {1, 2, 3, 4, 6, 12}
Để 9n +24 và 2n +4 là hai số nguyên tố cùng nhau => d=1 => d không chia hết cho 2 và d không chia hết cho 3
+) d không chia hết cho 2
=> 9n +24 không chia hết cho 2=> 9n không chia hết cho 2=> n không chia hết cho 2 => n=2k+1, k thuộc Z
+) d không chia hết cho 3
=> 2n+4 không chia hết cho 3 => 2(n+2) không chia hết cho 3 => n+2 không chia hết cho 3 => n-1 không chia hết cho 3 => n khác 3h+1, h thuộc Z
Em làm tiếp nhé!
đặt ( 9n + 24 , 2n + 4 ) = d
=> 9n + 24 chia hết cho d => 18n + 48 chia hết cho d
2n + 4 chia hết cho d => 18n + 36 chia hết cho d
=> 12 chia hết cho d
=> d thuộc { 1,2,3,4,6,12}
để 9n + 24 và 2n + 4 là 2 số nguyên tố cùng nhau => d = 1 => d không chia hết cho 2 và d không chia hết cho 3
+, d không chia hết cho 2
=> 9n + 24 không chia hết cho 2 => 9n không chia hết cho 2 => n không chia hết cho 2 => n = 2k + 1 , k thuộc Z
+, d không chia hết cho 3
=> 2n + 4 không chia hết cho 3 => 2 (n + 2 ) không chia hết cho 3 => n + 2 không chia hết cho 3 => n - 1 không chia hết cho 3 => n khác 3h + 1 , h thuộc Z
còn lại bn tuej lm nhé
Gọi d là ước chung của n + 1 và 7n + 4
Ta có : \(\hept{\begin{cases}n+1⋮d\\7n+4⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}7.\left(n+1\right)⋮d\\7n+4⋮d\end{cases}}\)=> 7.(n+ 1 ) - ( 7n + 4 ) \(⋮d\)
7n + 7 - 7n - 4 \(⋮d\)
3 \(⋮d\)=> d \(\inƯ\left(3\right)=\left\{1;3\right\}\)
Vậy để n + 1 và 7n + 4 là hai số nguyên tố cùng nhau thì d ={ 1;3 }