Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có : ĐK \(n\ne1\)
a, \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=1+\frac{7}{n-1}\)
để biểu thức có giá trị nguyện thì \(n-1\inƯ\left(7\right)\)
Ta có bảng sau:
n-1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
vậy n=-6, 0,2, 8
b, Ta có ĐK \(n\ne-\frac{1}{3}\)
\(\frac{6n-3}{3n+1}=\frac{6n+3-6}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}-\frac{6}{3n+1}=3-\frac{6}{3n+1}\)
để biểu thúc có giá trị nguyên thì \(3n+1\inƯ\left(6\right)\)
kẻ bảng tìm giá trị của n=0,-2/3,1/3, -1, 2/3, -4/3, 5/3, -7/3
c,ĐK : \(n\ne2\) tương tự ta phân tích \(\frac{n^2+3n-1}{n-2}=\frac{n^2-4n+4+7n-5}{n-2}=\frac{\left(n-2\right)^2}{n-2}+\frac{7n-5}{n-2}\)
\(=n-2+\frac{7n-14+9}{n-2}=\left(n-2\right)+7+\frac{9}{n-2}\)
để biểu thức có giá trị nguyên thì \(n-2\inƯ\left(9\right)\)
kẻ bảng tìm giá trị n
d, ĐK : \(n\ne1\)phân tích:
\(\frac{n^2+5}{n-1}=\frac{n^2-2n+1+2n+4}{n-1}=\frac{\left(n-1\right)^2}{n-1}+\frac{2n-2+6}{n-1}=\left(n-1\right)+2+\frac{6}{n-1}\)
để biểu thức có giá trị nguyên thì\(n-1\inƯ\left(6\right)\)
kẻ bảng tìm giá trị của n
2, a, để A là phân số thì \(2n+3\ne0\Leftrightarrow n\ne-\frac{3}{2}\)
b, để A là số nguyên thì\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}\)
hay \(2n+3\notinƯ\left(5\right)\)
kẻ bảng tìm giá trị của n
c, để A lớn nhất thì \(2-\frac{5}{2n+3}\) cũng lớn nhất
Và\(\frac{5}{2n+3}\)phải nhỏ nhất\(\Rightarrow\)\(2n+3\)lớn nhất và < 0 vì 5 là số dương
nên\(2n+3=-1\Rightarrow n=-2\)
thay n vào tính A vậy max A =7
để A bé nhất thì\(2-\frac{5}{2n+3}\)cũng bé nhất
\(\Rightarrow\)\(\frac{5}{2n+3}\)lớn nhất\(\Rightarrow\)2n+3 bé nhất và phải lớn hơn 0
vậy\(2n+3=1\Rightarrow n=-1\)
thay n vào để tìm min A=-3
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
a)\(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}.\text{ Để là số nguyên âm thì }\frac{5}{n-2}< 1\Rightarrow-6< n-2< 0\)
\(\Rightarrow-4< n< 2\)
NHững câu còn lại lm tưng tự!
Bài 2:
a)Gọi UCLN(14n+3;21n+4) là d
Ta có:
[3(14n+3)]-[2(21n+4)] chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1. Suy ra 14n+3 và 21n+4 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
b)Gọi UCLN(12n+1;30n+2) là d
Ta có:
[5(12n+1)]-[2(30n+2)] chia hết d
=>[60n+5]-[60n+4] chia hết d
=>1 chia hết d. Suy ra 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
c)Gọi UCLN(3n-2;4n-3) là d
Ta có:
[4(3n-2)]-[3(4n-3)] chia hết d
=>[12n-8]-[12n-9] chia hết d
=>1 chia hết d. Suy ra 3n-2 và 4n-3 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
d)Gọi UCLN(4n+1;6n+1) là d
Ta có:
[3(4n+1)]-[2(6n+1)] chia hết d
=>[12n+3]-[12n+2] chia hết d
=>1 chia hết d. Suy ra 4n+1 và 6n+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
Ta có : \(\frac{3n+2}{4n-5}=\frac{4\left(3n+2\right)}{4n-5}=\frac{12n+8}{4n-5}=\frac{3\left(4n-5\right)+23}{4n-5}=3+\frac{23}{4n-5}\)
Để \(\frac{3n+2}{4n-5}\) là số tự nhiên => \(\frac{23}{4n-5}\) là số tự nhiên => 23 chia hết cho 4n - 5
=> 4n - 5 ∈ Ư(23)
=> 4n - 5 ∈ { 1 ; 23 }
- Nếu 4n - 5 = 1 => 4n = 6 => n = 3/2 (ko thỏa mãn n ∈ Z)
- Nếu 4n - 5 = 23 => 4n = 28 => n = 7 (thỏa mãn n ∈ Z)
Vậy n = 7 thì \(\frac{3n+2}{4n-5}\) là số tự nhiên
câu a là vô tận
b)Vì \(\frac{3n+4}{n-2}\in Z\Rightarrow3n+4⋮n-2\Rightarrow3n-6+10⋮n-2\)
\(\Rightarrow10⋮n+2\Rightarrow n+2\inƯ\left(10\right)\)
đến đó bạn tự làm nhé