Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n+1 > 1 thì (n+3)(n+1) có > 2 ước là 1;(n+3)(n+1);(n+3);(n+1)
=>n+1\(\le\)1
để n \(\in\)N thì n+1>0 nên n+1=1 => n=0
để A là số nguyên tố thì phải đảm bảo A thuộc N
để A thuộc N
=> 2n + 8 chia hết cho n + 1
=> 2.(n + 1) + 6 chia hết cho n+ 1
=> 6 chia hết cho n +1
=> n+ 1 \(\in\) Ư(6 ) = {1;2;3;6}
=> n+1 =1 => n = 0
n+1 = 2 => n = 1 (snt)
n+1 =3 => n = 2 (sgt)
n + 1 = 6 => n = 5 (snt)
=> n = {1;2;5}
Để P là số nguyên tố thì n+ 4 \(⋮\)2n-1
\(\frac{n+4}{2n-1}\)= \(\frac{2\left(n+4\right)}{2n-1}\)= \(\frac{2n+8}{2n-1}\)= \(\frac{2n-1+9}{2n-1}\)= \(\frac{9}{2n-1}\)=> 9 \(⋮\)2n-1
=> 2n-1 \(\in\)Ư(9)= { 1;3 ; 9; -1; -3; -9}
=> 2n \(\in\){ 2; 4; 10; 0; -2; -8}
=> n \(\in\){ 1;2;5; 0; -1; -4}
Vậy...
\(P=\frac{n+4}{2n-1}\)
\(\Leftrightarrow n+4⋮2n-1\)
\(\Leftrightarrow2\left(n+4\right)⋮2n-1\)
\(\Leftrightarrow2n+8⋮2n-1\)
\(\Leftrightarrow2n-1+9⋮2n-1\)
Vì \(2n-1⋮2n-1\)
\(\Leftrightarrow9⋮2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta lập bảng xét giá trị
2n-1 | 1 | -1 | 3 | -3 | 9 | -9 |
2n | 2 | 0 | 4 | -2 | 10 | -8 |
n | 1 | 0 | 2 | -1 | 5 | -4 |
- Nếu n = 0 thi 11n = 0, không phải số nguyên tố
- Nếu n = 1 thì 11n = 11, là số nguyên tố
- Nếu n > 1 thì 11n \(\in\) B(11), là hợp số
Vậy n = 1 thỏa mãn
Nếu n = 0 thì 11n = 11.0 = 0 (không là số nguyên tố)
Nếu n = 1 thì 11n = 11.1 = 11 (là số nguyên tố)
Nếu n > 1 thì 11n lớn hơn 11 và chia hết cho 11 ( => là hợp số )
Vậy n = 1 thì 11n là số nguyên tố