Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{4}{3.5}+\frac{8}{5.9}+\frac{12}{9.15}+...+\frac{32}{n\left(n+16\right)}=\frac{16}{25}\)
\(2\left(\frac{1}{3}-\frac{1}{5}\right)+2\left(\frac{1}{5}-\frac{1}{9}\right)+2\left(\frac{1}{9}-\frac{1}{15}\right)+...+2\left(\frac{1}{n}-\frac{1}{n+16}\right)=\frac{16}{25}\)
\(2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{15}+...+\frac{1}{n}-\frac{1}{n+16}\right)=\frac{16}{25}\)
\(2\left(\frac{1}{3}-\frac{1}{n+16}\right)=\frac{16}{25}\)
\(\frac{1}{3}-\frac{1}{n+16}=\frac{8}{25}\)
\(\frac{1}{n+16}=\frac{1}{75}\)
\(\Rightarrow n+16=75\)
\(\Rightarrow n=59\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=--\frac{37}{45}.\)
\(x+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{37}{45}\)
\(x+\frac{1}{5}-\frac{1}{45}=\frac{37}{45}\)
\(x+\frac{1}{5}=\frac{37}{45}+\frac{1}{45}=\frac{38}{45}\)
\(x=\frac{38}{45}-\frac{1}{5}=\frac{29}{45}\)
\(b,\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2015}{2016}\)
\(\Rightarrow1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2015}{2016}\)
\(\Rightarrow1-\frac{1}{5x+6}=\frac{2015}{2016}\)
\(\Rightarrow\frac{1}{5x+6}=1-\frac{2015}{2016}=\frac{1}{2016}\)
\(\Rightarrow5x+6=2016\)
\(\Rightarrow5x=2010\Rightarrow x=402\)
\(c,\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x\left(x+2\right)}=\frac{2017}{2018}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2017}{2018}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{2017}{2018}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2017}{2018}=\frac{1}{2018}\)
\(\Rightarrow x+2=2018\Rightarrow x=2016\)
học tốt ~~~
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)
=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)
Vậy \(x\in\left\{\frac{9}{20}\right\}\)
\(b,x+\frac{1}{4}=\frac{4}{3}\)
=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)
Vậy \(x\in\left\{\frac{13}{12}\right\}\)
\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)
=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)
Vậy \(x\in\left\{\frac{25}{42}\right\}\)
\(d,\left|x+5\right|-6=9\)
=> \(\left|x+5\right|=9+6=15\)
=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)
Vậy \(x\in\left\{10;-20\right\}\)
\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)
=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)
\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{6}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)
\(g,x^2=16\)
=> \(\left|x\right|=\sqrt{16}=4\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
vậy \(x\in\left\{4;-4\right\}\)
\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)
=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
Vậy \(x\in\left\{\frac{5}{6}\right\}\)
\(i,3^3.x=3^6\)
\(x=3^6:3^3=3^3=27\)
Vậy \(x\in\left\{27\right\}\)
\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)
=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)
Vậy \(x\in\left\{\frac{5}{27}\right\}\)
\(k,1\frac{2}{3}:x=6:0,3\)
=> \(\frac{5}{3}:x=20\)
=> \(x=\frac{5}{3}:20=\frac{1}{12}\)
Vậy \(x\in\left\{\frac{1}{12}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n\left(n+2\right)}\)
\(=\frac{1}{2}\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{n}-\frac{2}{n+2}\right)\)
\(=\frac{1}{2}\left(2-\frac{2}{n+2}\right)=\frac{1}{2}\cdot\frac{2n+2}{n+2}=\frac{n+1}{n+2}< \frac{2003}{2004}\)
\(\Rightarrow\hept{\begin{cases}n+1=2002\\n+2=2003\end{cases}}\Leftrightarrow n=2001\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)+\left(x+\frac{1}{32}\right)=1\frac{31}{32}\)
\(\Leftrightarrow\left(x+x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)=1\frac{31}{32}\)
\(\Leftrightarrow5x+\frac{31}{32}=1\frac{31}{32}\)
\(\Leftrightarrow5x=1\frac{31}{32}-\frac{31}{32}\Leftrightarrow5x=1\Rightarrow x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a)
\(-3\frac{5}{8}+\left(-\frac{3}{8}+\frac{9}{4}\right)\)
\(=-\frac{29}{8}+\left(-\frac{3}{8}+\frac{18}{8}\right)\)
\(=-\frac{29}{8}+\frac{15}{8}=-\frac{14}{8}=-\frac{7}{4}\)
b) \(\frac{\left(-9\right)\cdot11+32\cdot\left(-9\right)}{\left(-43\right)\cdot15+12\cdot\left(-43\right)}=\frac{\left(-9\right)\left(11+32\right)}{\left(-43\right)\left(15+12\right)}=\frac{\left(-9\right)\cdot43}{\left(-43\right)\cdot27}=\frac{\left(-1\right)\cdot1}{\left(-1\right)\cdot3}=\frac{1}{3}\)
c) Thay \(x=\frac{2011}{2012}\)vào biểu thức \(x\cdot\frac{1}{3}+2x\cdot\frac{3}{6}-3x\cdot\frac{4}{9}\)ta có :
\(\frac{2011}{2012}\cdot\frac{1}{3}+2\cdot\frac{2011}{2012}\cdot\frac{3}{6}-3\cdot\frac{2011}{2012}\cdot\frac{4}{9}\)
\(=\frac{2011}{2012}\cdot\frac{1}{3}+2\cdot\frac{2011}{2012}\cdot\frac{1}{2}-3\cdot\frac{2011}{2012}\cdot\frac{4}{9}\)
\(=\frac{2011}{6036}+\frac{2011}{2012}-\frac{2011}{1509}\)
\(=\frac{2011}{6036}+\frac{6033}{6036}-\frac{8044}{6036}=\frac{2011+6033-8044}{6036}=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mik làm được mỗi ý b thui :
b ) \(\frac{169}{10}=16,9\)
mik nha
phần đầu bằng -6675/128
phần sau bằng 13
bạn dùng máy tính là được mà
\(\dfrac{4}{3.5}+\dfrac{8}{5\cdot9}+\dfrac{12}{9\cdot15}+...+\dfrac{32}{n\left(n+6\right)}=\dfrac{16}{25}\)
\(2\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+2\left(\dfrac{1}{5}-\dfrac{1}{9}\right)+2\left(\dfrac{1}{9}-\dfrac{1}{15}\right)+...+2\left(\dfrac{1}{n}-\dfrac{1}{n+16}\right)=\dfrac{16}{25}\)
\(2\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{15}+...+\dfrac{1}{n}-\dfrac{1}{n+16}\right)=\dfrac{16}{25}\)
\(2\left(\dfrac{1}{3}-\dfrac{1}{n+16}\right)=\dfrac{16}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{1}{n+16}=\dfrac{1}{75}\)
⇒ \(n+16=75\)
\(\Rightarrow n=59\)