\(\frac{1}{C^3_3}+\frac{1}{C^3_4}+\frac{1}{C^3_5}+...+\frac{1}{C^3_n}=\frac{89}{30}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 12 2019

\(\Leftrightarrow\frac{6}{1.2.3}+\frac{6}{2.3.4}+\frac{6}{3.4.5}+...+\frac{6}{\left(n-2\right)\left(n-1\right)n}=\frac{89}{30}\)

\(\Leftrightarrow\frac{3}{1.2}-\frac{3}{2.3}+\frac{3}{2.3}-\frac{3}{3.4}+...+\frac{3}{\left(n-2\right)\left(n-1\right)}-\frac{3}{\left(n-1\right)n}=\frac{89}{30}\)

\(\Leftrightarrow\frac{3}{1.2}-\frac{3}{\left(n-1\right)n}=\frac{89}{30}\)

\(\Leftrightarrow\frac{3}{n\left(n-1\right)}=-\frac{22}{15}\) (vô lý)

Vậy ko tồn tại n thỏa mãn

7 tháng 12 2019

Chương 2: TỔ HỢP. XÁC SUẤTOnl giờ này thì thiêng thật :((

AH
Akai Haruma
Giáo viên
21 tháng 1 2020

$n$ tiến đến đâu vậy bạn?

AH
Akai Haruma
Giáo viên
21 tháng 1 2020

Câu 2:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{(n+1)-n}{n(n+1)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

\(\Rightarrow \lim_{n\to \infty}(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n(n+1)})=\lim_{n\to \infty}(1-\frac{1}{n+1})=1-\lim_{n\to \infty}\frac{1}{n+1}=1-0=1\)

28 tháng 12 2020

Sao un dài thế? Hay là Sn? Chắc là Sn đó

\(C^3_n=\dfrac{n!}{3!.\left(n-3\right)!}=\dfrac{n\left(n-1\right)\left(n-2\right)}{6}\)

\(\Rightarrow\dfrac{1}{C^3_n}=\dfrac{6}{n\left(n-1\right)\left(n-2\right)}\)

\(\Rightarrow S_n=\dfrac{6}{1.2.3}+\dfrac{6}{2.3.4}+\dfrac{6}{3.4.5}+\dfrac{6}{4.5.6}+...+\dfrac{6}{n\left(n-1\right)\left(n-2\right)}\)

Này hình như toán lớp 6 thì phải, chả nhớ :v

\(\dfrac{1}{n\left(n-1\right)\left(n-2\right)}=\dfrac{n-\left(n-2\right)}{2.n\left(n-1\right)\left(n-2\right)}=\dfrac{1}{2\left(n-1\right)\left(n-2\right)}-\dfrac{1}{2n\left(n-1\right)}=\dfrac{1}{2}\left(\dfrac{1}{n-1}.\dfrac{1}{n-2}-\dfrac{1}{n-1}.\dfrac{1}{n}\right)\)

\(\dfrac{1}{1.2.3}=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{6}\right);\dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{6}-\dfrac{1}{12}\right);...\)

Cộng lại thì sẽ triệt tiêu mấy phần tử 1/6; 1/12;...

\(\Rightarrow S_n=6.\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n-1\right)}\right)=3\left(\dfrac{1}{2}-\dfrac{1}{n\left(n-1\right)}\right)\)

\(\Rightarrow lim\left(\dfrac{3}{2}-\dfrac{3}{n^2-n}\right)=\dfrac{3}{2}\)

Lâu ko ôn lại cũng miss cách tính limit luôn :v Cơ mà có khi bằng 3/2 thiệt á, check lại hộ tui xem

28 tháng 12 2020

chắc đúng rồi này

 

NV
18 tháng 9 2020

36.

\(sin^2x-cos^2x\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

37.

\(cos3x\ne cosx\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\)

38.

\(\left\{{}\begin{matrix}x\ge0\\sin\pi x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\pi x\ne k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne k\end{matrix}\right.\)

39.

\(\left\{{}\begin{matrix}cos\left(x-\frac{\pi}{3}\right)\ne0\\tan\left(x-\frac{\pi}{3}\right)\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\\x-\frac{\pi}{3}\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{5\pi}{6}+k\pi\\x\ne-\frac{\pi}{12}+k\pi\end{matrix}\right.\)

NV
18 tháng 9 2020

33.

\(\left\{{}\begin{matrix}cosx\ne0\\cos\frac{x}{2}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)

34.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cotx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\cotx\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{4}+k\pi\end{matrix}\right.\)

35.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\)

\(\Leftrightarrow x\ne k\pi\)

28 tháng 7 2019

Áp dụng bất đẳng thức Cô-si liên tục 2 lần ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}}\ge\frac{2}{\frac{\left(a+b-c\right)+\left(b+c-a\right)}{2}}=\frac{2}{\frac{2b}{2}}=\frac{2}{b}\)

Chứng minh tương tự ta cũng có :

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a};\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng theo vế của 3 bất đẳng thức trên ta được :

\(2\cdot\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Hay ta có đpcm

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác ABC đều

22 tháng 1 2020

Câu 4.

\(\lim \left( {{n^2}\sin \dfrac{{n\pi }}{5} - 2{n^3}} \right) = \lim {n^3}\left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - \infty \)

\(\lim {n^3} = + \infty ;\lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2 \)

\(\left| {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n}} \right| \le \dfrac{1}{n};\lim \dfrac{1}{n} = 0 \Rightarrow \lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2\)

22 tháng 1 2020

Câu 5.

Ta có: \(\left\{ \begin{array}{l} 0 \le \left| {{u_n}} \right| \le \dfrac{1}{{{n^2} + 1}} \le \dfrac{1}{n} \to 0\\ 0 \le \left| {{v_n}} \right| \le \dfrac{1}{{{n^2} + 2}} \le \dfrac{1}{n} \to 0 \end{array} \right. \to \lim {u_n} = \lim {v_n} = 0 \to \lim \left( {{u_n} + {v_n}} \right) = 0\)

AH
Akai Haruma
Giáo viên
1 tháng 11 2019

Lời giải:
Từ $a+b+c=2; \frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=2,5$

$\Rightarrow (a+b+c)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=5$

\(\Leftrightarrow \frac{a}{a+b}+\frac{a}{a+c}+\frac{a}{b+c}+\frac{b}{a+b}+\frac{b}{a+c}+\frac{b}{b+c}+\frac{c}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}=5\)

\(\Leftrightarrow \frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=5\)

\(\Leftrightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2\)

Khi đó:

\(A=\frac{a-(b+c)}{b+c}+\frac{b-(c+a)}{c+a}+\frac{c-(a+b)}{a+b}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-3\)

\(=2-3=-1\)

Vậy $A=-1$