K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

Đặt \(n^2+n+12=a^2\)

\(\Leftrightarrow a^2-\left(n^2+n+12\right)=0\)

\(\Leftrightarrow a^2-\left(n^2+n+\frac{1}{4}\right)+\frac{49}{4}=0\)

\(\Leftrightarrow a^2-\left(n+\frac{1}{2}\right)^2=\frac{-49}{4}\)

\(\Leftrightarrow\left(a+n+\frac{1}{2}\right)\left(a-n-\frac{1}{2}\right)=\frac{-49}{4}\)

Vì \(\frac{-49}{4}\)không nguyên nên không có n để \(n^2+n+12\)là số chính phương

Vì n^2 + 2n + 12 là số chính phương nên đặt n^2 + 2n + 12 = k^2 (k thuộc N)

Suy ra (n^2 + 2n + 1) + 11 = k^2Suy ra k^2 – (n+1)2 = 11

Suy ra (k+n+1)(k-n-1) = 11

Nhận xét thấy k+n+1 > k-n-1 và chúng là những số nguyên dương, nên ta có thể viết : (k+n+1)(k-n-1) = 11.1

+ Với k+n+1 = 11 thì k = 6

Thay vào ta có : k – n - 1 = 16 - n - 1 =1 Suy ra n = 4

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

14 tháng 2 2018

Đang bận nên hướng dẫn

a )Đặt  \(n^2-n+2=a^2\) (a thuôc Z)

\(\Leftrightarrow4n^2-4n+8=4a^2\)

\(\Leftrightarrow\left(4n^2-4n+1\right)-4a^2+7=0\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)

\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2n-1\right)=-7\)

Đến đây  phân tích ước của  7 ra ; tự lm đc

b) Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Ta thấy tổng trên chia hết cho 2 và 5 nên \(n^5-n\) chia hết cho 10

=> \(n^5-n+2\) có chữ số tận cùng là 2 ko phải số CP 

30 tháng 11 2016

Ta có

\(n^2< n^2+n+6< n^2+6n+9\)

\(\Leftrightarrow n^2< n^2+n+6< \left(n+3\right)^2\)

Vì n2 +n+ 6 là số chính phương nên 

\(\left(n^2+n+6\right)=\left(\left(n+1\right)^2;\left(n+2\right)^2\right)\)

Thế vô giải ra được n = 5

11 tháng 4 2017

Đặt \(n^2+n+1=k^2\left(k\in Z^+\right)\)

\(\Leftrightarrow4n^2+4n+4=4k^2\)

\(\Leftrightarrow4k^2=4n^2+4n+1+3\)

\(\Leftrightarrow4k^2-\left(2n+1\right)^2=3\)

\(\Leftrightarrow\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)

Vì \(n,k\in Z\Rightarrow2k-2n-1,2k+2n+1\inƯ\left(3\right)\)

*lập bảng

2k-2n-1-3-113
2k+2n+1-1-331
2k-2n-2024
2k+2n-2-420
k-1-111
n0-10-1

Vậy \(n\in\){-1; 0} thì n2+n+1 là số cp

11 tháng 8 2018

tìm n nguyên dg mà bạn

11 tháng 8 2017

[[[[[[[[[[[[[[[ơ