![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đang bận nên hướng dẫn
a )Đặt \(n^2-n+2=a^2\) (a thuôc Z)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\Leftrightarrow\left(4n^2-4n+1\right)-4a^2+7=0\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2n-1\right)=-7\)
Đến đây phân tích ước của 7 ra ; tự lm đc
b) Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Ta thấy tổng trên chia hết cho 2 và 5 nên \(n^5-n\) chia hết cho 10
=> \(n^5-n+2\) có chữ số tận cùng là 2 ko phải số CP
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
\(n^2< n^2+n+6< n^2+6n+9\)
\(\Leftrightarrow n^2< n^2+n+6< \left(n+3\right)^2\)
Vì n2 +n+ 6 là số chính phương nên
\(\left(n^2+n+6\right)=\left(\left(n+1\right)^2;\left(n+2\right)^2\right)\)
Thế vô giải ra được n = 5
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(n^2+n+1=k^2\left(k\in Z^+\right)\)
\(\Leftrightarrow4n^2+4n+4=4k^2\)
\(\Leftrightarrow4k^2=4n^2+4n+1+3\)
\(\Leftrightarrow4k^2-\left(2n+1\right)^2=3\)
\(\Leftrightarrow\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)
Vì \(n,k\in Z\Rightarrow2k-2n-1,2k+2n+1\inƯ\left(3\right)\)
*lập bảng
2k-2n-1 | -3 | -1 | 1 | 3 |
2k+2n+1 | -1 | -3 | 3 | 1 |
2k-2n | -2 | 0 | 2 | 4 |
2k+2n | -2 | -4 | 2 | 0 |
k | -1 | -1 | 1 | 1 |
n | 0 | -1 | 0 | -1 |
Vậy \(n\in\){-1; 0} thì n2+n+1 là số cp
Đặt \(n^2+n+12=a^2\)
\(\Leftrightarrow a^2-\left(n^2+n+12\right)=0\)
\(\Leftrightarrow a^2-\left(n^2+n+\frac{1}{4}\right)+\frac{49}{4}=0\)
\(\Leftrightarrow a^2-\left(n+\frac{1}{2}\right)^2=\frac{-49}{4}\)
\(\Leftrightarrow\left(a+n+\frac{1}{2}\right)\left(a-n-\frac{1}{2}\right)=\frac{-49}{4}\)
Vì \(\frac{-49}{4}\)không nguyên nên không có n để \(n^2+n+12\)là số chính phương
Vì n^2 + 2n + 12 là số chính phương nên đặt n^2 + 2n + 12 = k^2 (k thuộc N)
Suy ra (n^2 + 2n + 1) + 11 = k^2Suy ra k^2 – (n+1)2 = 11
Suy ra (k+n+1)(k-n-1) = 11
Nhận xét thấy k+n+1 > k-n-1 và chúng là những số nguyên dương, nên ta có thể viết : (k+n+1)(k-n-1) = 11.1
+ Với k+n+1 = 11 thì k = 6
Thay vào ta có : k – n - 1 = 16 - n - 1 =1 Suy ra n = 4