Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(n^2+1\)\(⋮\)\(n+2\)
\(\Leftrightarrow\)\(\left(n-2\right)\left(n+2\right)+5\)\(⋮\)\(n+2\)
Ta thấy \(\left(n-2\right)\left(n+2\right)\)\(⋮\)\(n+2\)
nên \(5\)\(⋮\)\(n+2\)
hay \(n+2\)\(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta lập bảng sau:
\(n+2\) \(-5\) \(-1\) \(1\) \(5\)
\(n\) \(-7\) \(-3\) \(-1\) \(3\)
Vậy....
đường quỳnh giang đây là bài lớp 6 mà m đi dùng hẳng đẳng thức ?? em nó hiểu làm sao được hả con ngu này :)
b) n + 3 \(⋮\) n - 1 <=> (n - 1) + 4 \(⋮\) n - 1
=> 4 \(⋮\) n - 1 (vì n - 1 \(⋮\) n - 1)
=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}
Lập bảng giá trị:
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Vậy n ∈ {2; 0; 3; -1; 5; -3}
n2 + 3 chia hết cho n - 1
=> n2 - 1 + 4 chia hết cho n - 1
=> (n - 1)(n + 1) + 4 chia hết cho n - 1
Mà (n - 1)(n + 1) chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 \(\in\) Ư(4) = {-1;1;-2;2;-4;4}
=> n \(\in\) {0;2;-1;3;-3;5}
n2 + 3n - 13 chia hết cho n + 3
=> n(n + 3) - 13 chia hết cho n + 3
=>13 chia hết cho n + 3 (Vì n(n + 3) chia hết cho n + 3)
=> n + 3 thuộc {1; -1; 13; -13}
=> n thuộc {-2; -4; 10; -16}
để n^2 + 3n + 2 chia hết cho n - 1 thì:
n^2 + 3(n - 1)+5 chia hết cho n-1
suy ra: 5 chia hết cho n-1 hay n-1 thuộc Ư(5)
Mà Ư(5)={1;5;-1;-5}
*Với n-1=1 suy ra n= 2
*Với n-1=5 suy ra n=6
*Với n-1=-1 suy ra n=0
*Với n-1=-5 suy ra n=-4
Vậy n thuộc {2;6;0;-4}
Câu b tương tự nha bn !!!
n thuoc {0; -2}
Ta có: n^2+n+1
= n.n+n.1+1
= n.(n+1)+1
Để n^2+n+1 chia hết cho n+1
=> 1 phải chia hết cho n+1
=> n+1 thuộc Ư(1)={-1;1}
Vậy n+1=-1 hoặc n+1=1
=> n=-2 hoặc 0