\(n^2+2n-4⋮11\)

\(n^4-2n^3+2n^2-2n+1⋮n^4+1\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

a, \(n^2+2n-4=n^2+2n-15+11=\left(n-3\right)\left(n-5\right)+11\)

Để \(n^2+2n-4⋮11\Leftrightarrow\left(n-3\right)\left(n+5\right)⋮11\Leftrightarrow\left[{}\begin{matrix}n-3⋮11\\n+5⋮11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=BS11+3\\n=BS11-5\end{matrix}\right.\)

c,\(\dfrac{n^3-n^2+2n+7}{n^2+1}=\dfrac{n^3+n-n^2-1+n+8}{n^2+1}=\dfrac{n\left(n^2+1\right)-\left(n^2+1\right)+n+8}{n^2+1}=n-1+\dfrac{n+8}{n^2+1}\)

Để \(n^3-n^2+2n+7⋮n^2+1\Leftrightarrow n+8⋮n^2+1\)

\(\Rightarrow\left(n+8\right)\left(n-8\right)⋮n^2+1\Rightarrow n^2-64⋮n^2+1\)

\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)

\(\Rightarrow n^2+1\inƯ\left(65\right)=\left\{\pm1;\pm5;\pm13;\pm65\right\}\)

\(n^2+1\ge1\Rightarrow n^2+1\in\left\{1;5;13;65\right\}\)

\(\Rightarrow n\in\left\{0;\pm2;\sqrt{12};\pm8\right\}\)

15 tháng 1 2019

Câu c ý tưởng thì hay đó, mỗi tội thiếu bước thử lại

13 tháng 11 2017

ko bít

13 tháng 11 2017

ko biết nói làm j

18 tháng 7 2018

có ai giúp mik với

23 tháng 10 2018

       Câu hỏi của Nguyễn Trang Linh       

23 tháng 10 2018

 a) n^2 + 2n - 4 = n^2 + 2n - 15 + 11

= (n^2 + 5n - 3n -15) + 11

= (n - 3)(n + 5) + 11 để n^2 + 2n - 4 chia hết cho 11

<=> (n - 3).(n +5) chia hết cho 11

<=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)

n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)

n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)

Vậy với n = 11k + 3 hoặc n = 11k' - 5 thì.....

b)Sửa thành 2n^3 + n^2 +7n+1 mới lm đc nha!!

2n^3 + n^2 + 7n + 1 = n^2. (2n - 1) + 2n^2 + 7n + 1

= n^2. (2n -1) + n.(2n -1) + 8n + 1

= (n^2 + n)(2n -1) + 4.(2n -1) + 5

= (n^2 + n + 4)(2n -1) + 5

Để 2n^3 + n2 + 7n + 1 chia hết cho 2n - 1

<=> (n^2 + n + 4)(2n -1) + 5 chia hết cho 2n -1

<=> 5 chia hết cho 2n -1

<=> 2n - 1 ∈Ư(5) = {-5;-1;1;5} 

.......

23 tháng 10 2018

Hỏi đáp Toán

a: Gọi d=UCLN(2n+1;5n+2)

\(\Leftrightarrow10n+5-10n-4⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UCLN(2n+1;5n+2)=1

hay 2n+1/5n+2 là phân số tối giản

b: Gọi d=UCLN(12n+1;30n+2)

\(\Leftrightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Leftrightarrow60n+5-60n-4⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>UCLN(12n+1;30n+2)=1

=>12n+1/30n+2là phân số tối giản

c: Gọi \(d=UCLN\left(2n+1;2n^2-1\right)\)

\(\Leftrightarrow n\left(2n+1\right)-2n^2+1⋮d\)

\(\Leftrightarrow n+1⋮d\)

\(\Leftrightarrow2n+2⋮d\)

\(\Leftrightarrow2n+2-2n-1⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>\(\dfrac{2n+1}{2n^2-1}\) là phân số tối giản