\(\frac{n+2}{n-1}\)
a)  là số nguyên
b)  là phân số tối giản

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

b)

goi D LA U(n+2/n-1)

=>n+2 chia het cho d=>n(n+2) chia het cho D

=>N-1 CHIA HET CHO D =N(N-1) .............

=>1 CHIA HET CHO D=>D=1

=>...........LA P/S TOI GIAN

2 tháng 4 2016

Ta có \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}\)

Mà \(\frac{n+2}{n-1}\) là phân số tối giản 

=> 3 chia hết n-1 =>3 và n-1 là ước chung của 3
Có 3 chia hết cho 1 và 3=> (n-1) không chia hết cho 2;3 và 6 => (n-1) không chia hết cho 2 và 3 => n-1 không chia hết cho 2 => n-1 khác 2p => n khác 2p +1. 
n-1 không chia hết cho 3 => n-1 khác 3q => n khác 3q +1( với p và q là số nguyên). 
Vậy với n khác 2p +1 và 3q +1 thì phân số đã cho là tối giản.

4 tháng 5 2020

Mik học lớp 6 nhưng lại quên mất câu trả lời rồi!

sorry bạn nha!

4 tháng 5 2020

1. Gọi d là ƯC(n - 5 ; 3n - 14)

\(\Rightarrow\hept{\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}}\)

=> ( 3n - 15 ) - ( 3n - 14 ) chia hết cho d

=> 3n - 15 - 3n + 14 chia hết cho d

=> ( 3n - 3n ) + ( 14 - 15 ) chia hết cho d

=> 0 + ( -1 ) chia hết cho d

=> -1 chia hết cho d

=> d = 1 hoặc d = -1

=> ƯCLN(n - 5 ; 3n - 14) = 1

=> \(\frac{n-5}{3n-14}\)tối giản ( đpcm )

2. Gọi phân số cần tìm là \(\frac{a}{b}\)

Theo đề bài ta có : \(\frac{a}{b}=\frac{5}{6}\)và \(a+b=88\)

=> \(\frac{a}{5}=\frac{b}{6}\)và \(a+b=88\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{5}=\frac{b}{6}=\frac{a+b}{5+6}=\frac{88}{11}=8\)

\(\frac{a}{5}=8\Rightarrow a=40\)

\(\frac{b}{6}=8\Rightarrow b=48\)

=> \(\frac{a}{b}=\frac{40}{48}\)

Vậy phân số cần tìm là \(\frac{40}{48}\)

3. \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)

Để \(\frac{n+2}{n-1}\)có giá trị nguyên => \(\frac{3}{n-1}\)có giá trị nguyên

=> \(3⋮n-1\)

=> \(n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

=> \(n\in\left\{2;0;4;-2\right\}\)

28 tháng 5 2015

1. a) Để phân số có giá trị nguyên thì n + 9 phải chia hết cho n - 6 

Ta có: n + 9 chia hết cho n - 6

=> n - 6 + 15 chia hết cho n - 6

=> 15 chia hết cho n - 6.

=> n - 6 thuộc Ư(15) = {1; 3; 5; 15}

=> n thuộc {7; 9; 11; 21}

2. Giả sử \(\frac{12n+1}{30n+2}\)không phải là phân số tối giản 

=> 12n + 1 và 30n + 2 có UCLN là d (d > 1) 
d là ước chung của 12n + 1 và 30n + 2

=> d là ước của 30n + 2 - 2(12n + 1) = 6n 
=> d là ước chung của 12n + 1 và 6n => d là ước của 12n + 1 - 2.6n = 1 
d là ước của 1 mà d > 1 (vô lý) => điều giả sử trên sai => đpcm. 

31 tháng 1 2018

chứng minh 12n + 1/30n + 2

gọi a là ƯC của 12n + 1 và  30n + 2

=> 12n + 1 chia hết cho a

=> 12n chia hết cho a

     1 chia hết cho a

=> a = 1

vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau

nên 12n + 1/30n + 2 là phân số tối giản (điều phải chứng minh)

29 tháng 2 2016

a) A thuộc Z
=> n + 1 chia hết cho n - 3

n - 3 + 4 chia hết cho n - 3

4 chia hết cho  n - 3

n - 3 thuộc U(4) = {-4 ; -2 ; -1 ; 1 ; 2; 4}

n thuộc {-1 ; 1 ; 2 ; 4 ; 5 ; 7}

16 tháng 2 2015

đề bài là 30n+1 thì mới làm được nếu là 30n+1 thì làm như sau 

gọi d thuộc ước chung  của 15n+1 và 30n+1 

suy ra 15n+1 chia hết cho d  

30n+1 chia hết cho d

vậy 2.(15n+1) chia hết cho d

30n+1 chia hết cho d 

suy ra 30n+2 chia hết cho d 

30n+1 chia hết cho d 

vậy(30n+2)-(30n+1) chi hết cho d 

1 chia hết cho d 

vậy d thuộc tập hợp 1 và -1

c/m 15n+1/30n+1 là phân số tối giản 

 

đè bài câu a sai ròi bạn ạ 

phải là 30n +1

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

\(\frac{n+1}{n-2}\) là số nguyên \(\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n-2\in\left\{1;-1;3;-3\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)

12 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{2n-2}{2n+4}=\frac{2n+4-6}{2n+4}=\frac{2n+4}{2n+4}-\frac{6}{2n+4}=1-\frac{6}{2n+4}\)

Để A là số nguyên thì \(\frac{6}{2n+4}\) phải là số nguyên hay nói cách khác \(6⋮\left(2n+4\right)\)

\(\Rightarrow\)\(\left(2n+4\right)\inƯ\left(6\right)\)

Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

Suy ra : 

\(2n+4\)\(1\)\(-1\)\(2\)\(-2\)\(3\)\(-3\)\(6\)\(-6\)
\(n\)\(\frac{-3}{2}\)\(\frac{-5}{2}\)\(-1\)\(-3\)\(\frac{-1}{2}\)\(\frac{-7}{2}\)\(1\)\(-5\)

Mà \(n\inℤ\) nên \(n\in\left\{-5;-3;-1;1\right\}\)

Vậy \(n\in\left\{-5;-3;-1;1\right\}\)

Chúc bạn học tốt ~

12 tháng 3 2018

b)Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản

10 tháng 8 2016

a) gọi D là UCLN(3n-2;4n-3)

\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho  D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D

\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D

\(\Rightarrow\)(12n-9-12n+8) chia hết cho D

\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}

hay UCLN(3n-2;4n-3) \(\in\){1;-1}

chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản

b) +) để A là phân số thì n-3\(\ne\)0

                             =>n\(\ne\)3

+) ta có  \(\frac{n+1}{n-3}\)\(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)

để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên 

=> 4 chia hết n-3

=> n-3 \(\in\)U(4)

mà U(4) = {-1;-2;-4;1;2;4}                             

ta có bảng

n-3-1-2-4124
n21-1457

vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên