\(\frac{1}{1.3}\)+ \(\frac{1}{3.5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{n\left(n+2\right)}< \frac{2003}{2004}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{n}+\frac{1}{n+2}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{n+2}\right)\)

\(=\frac{1}{2}\left(\frac{n+2}{n+2}-\frac{1}{n+2}\right)\)

\(=\frac{1}{2}.\frac{n+1}{n+2}\)

\(=\frac{n+1}{2\left(n+2\right)}< \frac{2003}{2004}\)

\(\Leftrightarrow\hept{\begin{cases}n+1< 2003\\2\left(n+2\right)< 2004\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n< 2002\\\left(n+2\right)< 1002\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n< 2002\\n< 1000\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n+1=2002\\2\left(n+2\right)=1000\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n=2001\\n=498\end{cases}}\)

6 tháng 3 2018

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n\left(n+2\right)}\)

\(=\frac{1}{2}\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{n}-\frac{2}{n+2}\right)\)

\(=\frac{1}{2}\left(2-\frac{2}{n+2}\right)=\frac{1}{2}\cdot\frac{2n+2}{n+2}=\frac{n+1}{n+2}< \frac{2003}{2004}\)

\(\Rightarrow\hept{\begin{cases}n+1=2002\\n+2=2003\end{cases}}\Leftrightarrow n=2001\)

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{n\cdot\left(n+2\right)}<\frac{2003}{2004}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}<\frac{2003}{2004}\)

\(\Rightarrow1-\frac{1}{n+2}<\frac{2003}{2004}\)

\(\Rightarrow\frac{1}{n+2}>\frac{1}{2004}\)

\(\Rightarrow n+2<2004\)

\(\Rightarrow n=2002\)

nhầm bước cuối

\(\Rightarrow n<2002\)

29 tháng 4 2018

\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left\{\left(2x+1\right).\left(2x+3\right)\right\}}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\cdot\left(\frac{2x+3}{2x+3}-\frac{1}{2x+3}\right)=\frac{49}{99}\)

\(\frac{1}{2}.\frac{2x+2}{2x+3}=\frac{49}{99}\)

\(\frac{2x+2}{2x+3}=\frac{49}{99}:\frac{1}{2}\)

\(\frac{2x+2}{2x+3}=\frac{98}{99}\)

=) \(2x+2=98\)và \(2x+3=99\)

TH1 : \(2x+2=98\)

\(2x=98-2\)

\(2x=96\)

\(x=96:2\)

\(x=48\)( THỎa mãn )

TH2 : 
\(2x+3=99\)

\(2x=99-3\)

\(2x=96\)

\(x=96:2\)

\(x=48\)( THỎa mãn )

Vậy x = 48

29 tháng 4 2018

Đặt A=

11 tháng 12 2016

\(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)

\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2003}{2004}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)\(\Rightarrow\frac{1}{n+1}=\frac{1}{4008}\)\(n+1=4008\Rightarrow n=4007\)

 

 

11 tháng 12 2016

cảm ơn

9 tháng 5 2019

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{x(x+2)}=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x(x+2)}\right]=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right]=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}\left[1-\frac{1}{x+2}\right]=\frac{20}{41}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{41}\Leftrightarrow x+2=41\Leftrightarrow x=39\)

9 tháng 5 2019

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}.\)

\(1-\frac{1}{x+2}=\frac{20}{41}\Rightarrow\frac{1}{x+2}=\frac{21}{41}=\frac{21}{21x+42}\Rightarrow21x+42=41\Rightarrow x=-\frac{1}{21}\)

18 tháng 3 2017

Đặt A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)

A=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)

A = \(1-\frac{1}{n+2}\)

A= \(\frac{n+1}{n+2}\)=> Để A<2003/2004 thì \(\left(n+1\right).2004< \left(n+2\right).2003\)

\(\Leftrightarrow2004n+2004< 2003n+4006\)

\(\Leftrightarrow n< 2002\)

18 tháng 3 2017

1/1-1/3+1/3-1/5+1/5-1/7+....+1/n-1/(n+2)

=1-1/(n+2)=(n+1)/(n+2)

Suy ra n =2001