\(A=\frac{12n+1}{2n+3}\)có giá trị nguyên

chú ý:n có thể là phân số

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

\(A=\frac{12n+1}{2n+3}=\frac{6.\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)

để \(A\in Zthi\frac{17}{2n+3}\in Z\)

và \(17⋮2n+3\)

\(\Rightarrow2n+3\inƯ\left(17\right)=1;17;-1;-17\)

\(\Rightarrow n\in\left(-1;7;-2;-10\right)\)

23 tháng 4 2018

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
11 tháng 7 2019

Ta có: A = \(\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)

Để A \(\in\)Z <=> 8 \(⋮\)n - 3 <=> n - 3 \(\in\)Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng : 

n - 3 1 -1 2 -2 4 -4 8 -8
  n 4 2 5 1 7 -1 11 -5

Vậy ...

B = \(\frac{12n-5}{2n-1}=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)

Để B \(\in\)Z <=> 1 \(⋮\)2n - 1 <=> 2n - 1 \(\in\)Ư(1) = {1; -1}

+) 2n - 1 = 1 => 2n = 1 + 1 = 2 => n = 2 : 2 = 1

  2n - 1 = -1 => 2n = -1 + 1 = 0 => n = 0 : 2 = 0

Vậy ...

11 tháng 7 2019

\(A=\frac{5n-7}{n-3}\)Điều kiện : \(n\ne3\)

\(A=\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)

Để \(A\in Z\Rightarrow\frac{8}{n-3}\in Z\Rightarrow n-3\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

\(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)

Vậy \(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)thì \(A\in Z\)

\(B=\frac{12n-5}{2n-1}\) Điều kiện : \(n\ne\frac{1}{2}\)

\(=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)

Để \(B\in Z\Rightarrow\frac{1}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

Vậy \(\Rightarrow n\in\left\{0;1\right\}\)thì \(B\in Z\)

18 tháng 4 2021

các bạn ơi 12n+5 nhé mình viết thiếu mất :)

Cho \(A=\frac{12n+5}{2n+3}=\frac{6\left(2n+3\right)-13}{2n+3}=\frac{6\left(2n+3\right)}{2n+3}-\frac{13}{2n+3}\in Z\)

Để \(A\in Z\Rightarrow13⋮\left(2n+3\right)\)hay \(2n+3\inƯ\left(13\right)\)

Ta có :

\(Ư\left(13\right)\in\left\{\pm1;\pm13\right\}\Rightarrow2n+3\in\left\{\pm1;\pm13\right\}\)

\(2n+3\)\(n\)
\(1\)\(-1\)
\(-1\)\(-2\)
\(13\)\(5\)
\(-13\)\(-8\)

Vậy để A nguyên \(\Rightarrow n\in\left\{-1;-2;5;-8\right\}\)

17 tháng 4 2016

a)để A là 1 ps (n\(\in\)Z;n\(\ne\)5;1;9;-3;13;-7;33;-27)

b)\(\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-15}{2n+3}=\frac{6\left(2n+3\right)}{2n+3}-\frac{15}{2n+3}\in Z\)

=>15 chia hết 2n+3

=>2n+3\(\in\){1,-1,3,-3,5,-5,15,-15}

=>n\(\in\){5;1;9;-3;13;-7;33;-27}

5 tháng 4 2015

Có mấy chục câu dạng này rồi mà bạn cứ hỏi. Để A là số nguyên thì tử phải chia hết cho mẫu...tách tử ra rồi làm ra kết quả.

\(\frac{n+1}{n-2}\) là số nguyên \(\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n-2\in\left\{1;-1;3;-3\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)

12 tháng 2 2017

b) Để A là số nguyên => 12n+1\(⋮\)2n+3

Do 2n+3\(⋮\)2n+3 => 12n+18\(⋮\)2n+3

=> 12n+18-(12n+1)\(⋮\)2n+3

    hay 17\(⋮\)2n+3

=>2n+3\(\in\){1;17;-1;-17}

Vậy n\(\in\){-1;7;-2;-10}

12 tháng 2 2017

cảm ơn bạn

2 tháng 4 2018

a) Để A là p/số thì 2n+3 khác 0

=>2n+3=0

2n=3+0

n=3/2

=>n khác 3/2

b)\(\frac{12n+1}{2n+3}=\frac{12n+18-17}{2n+3}=6-\frac{17}{2n+3}\)

\(\Rightarrow2n+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)

\(\Rightarrow2n\in\left\{-20;-4;-2;14\right\}\)

\(\Rightarrow n\in\left\{-10;-2;-1;7\right\}\)

3 tháng 4 2018

mik chỉ làm câu b thôi câu a dễ thì tự làm nhé

để A là số nguyên khi 12n+1 chia hết cho 2n+3

=>2n+3 thuộc Ư(12n+1)

có 12n+1 = 12n +18-15

=>(12n+18)-15 chia hét cho 2n+3

có 12n+18chia hết cho 2n+3

=> -15 chia hết cho 2n+3

có Ư(-15)=(+1;+3;+5;+15)

2n+31-13-35-515-15
2n-2-40-62-812-18
n-1-20-31-46-9
28 tháng 5 2018

Ta có :

\(A=\frac{2n+3}{2n-3}=\frac{2n-3+6}{2n-3}=1+\frac{6}{2n-3}\)

để A \(\in\)\(\Leftrightarrow\)\(1+\frac{6}{2n-3}\)\(\in\)\(\Leftrightarrow\)\(\frac{6}{2n-3}\)\(\in\)\(\Leftrightarrow\)2n - 3 \(\in\)Ư ( 6 ) = { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }

Lập bảng ta có :

2n-31-12-23-36-6
n215/21/2309/2-3/2

vì n \(\in\)Z nên n = { 2 ; 1 ; 3 ; 0 }

28 tháng 5 2018

Ta có :  \(A=\frac{2n+3}{2n-3}=\frac{\left(2n-3\right)+6}{2n-3}=1+\frac{6}{2n-3}\)

Để  \(A\in N\) thì  \(\frac{6}{2n-3}\in N\)

\(\Rightarrow6⋮2n-3\)

\(\Leftrightarrow2n-3\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Ta có bảng sau :

2n-31-12-23-36-6
2n4251609-3
n212,50,5304,5-1,5

Vậy ...