\(-7x^{n+1}y^2\) và B= \(4x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để A chia hết cho B thì \(\left\{{}\begin{matrix}n+1-5>0\\2-4>0\left(loại\right)\end{matrix}\right.\Leftrightarrow n\in\varnothing\)

b: \(\dfrac{A}{B}=\dfrac{5x^3y^{n+2}-3x^2y^2}{-3x^{n-1}y^n}=-\dfrac{5}{3}x^{4-n}y^2+x^{3-n}y^{2-n}\)

Để A chia hết cho B thì \(\left\{{}\begin{matrix}4-n>=0\\3-n>=0\\2-n>=0\end{matrix}\right.\Leftrightarrow n< =2\)

c: \(\dfrac{A}{B}=\dfrac{3x^6\left(2x+5\right)^{n+3}}{2x^2\left(2x+5\right)^{n-1}}=\dfrac{3}{2}x^4\left(2x+5\right)^{n+3-n+1}=\dfrac{3}{2}x^4\left(2x+5\right)^4\)

=>Với mọi N thì A chia hết cho B

a: \(\dfrac{A}{B}=\dfrac{-5}{3}x^{3-n+1}y^{n+2-n}+x^{2-n+1}y^{2-n}\)

\(=\dfrac{-5}{3}x^{2-n}y^2+x^{3-n}y^{2-n}\)

Để A chia hết cho B thì \(\left\{{}\begin{matrix}2-n\ge0\\3-n\ge0\end{matrix}\right.\Leftrightarrow n\le2\)

b: Vì n+3>n-1

nên A chia hết cho B với mọi n

19 tháng 10 2018

Ta có : 

\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)

Để A chia hết cho B thì tất cả số mũ của phần biến phải không âm 

\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)

\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)

\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

Từ những dữ kiện trên \(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)

Vậy \(n=4\)

Chúc bạn học tốt ~ 

19 tháng 10 2018

\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)

Để \(\left(3x^{n-1}y^6-5x^{n+1}y^4\right)⋮2x^3y^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)

\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)

\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)

\(\left(7x^{n-1}y^5-5x^3y^4\right):5x^2y^n=\frac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)

Để \(\left(7x^{n-1}y^5-5x^3y^4\right)⋮5x^2y^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(n-3\ge0\)\(\Leftrightarrow\)\(n\ge3\)

\(5-n\ge0\)\(\Leftrightarrow\)\(n\le5\)

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(\Rightarrow\)\(3\le n\le4\)\(\Rightarrow\)\(n\in\left\{3;4\right\}\)

Chúc bạn học tốt ~ 

11 tháng 7 2019

\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)

\(b,5x^3y^2-25x^2y^3+40xy^4\)

\(=5xy^2\left(x^2-5xy+8y^2\right)\)

\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)

\(=-2x^2y^2\left(2x-3+4x^2y\right)\)

\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)

\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)

\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)

\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)

\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)

\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(a-b-c\right)\)

\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)

\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)

\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)

11 tháng 7 2019

a,3x3y315x2y2=3x2y2(xy5)a,3x3y3−15x2y2=3x2y2(xy−5)

b,5x3y225x2y3+40xy4b,5x3y2−25x2y3+40xy4

=5xy2(x25xy+8y2)=5xy2(x2−5xy+8y2)

c,4x3y2+6x2y28x4y3c,−4x3y2+6x2y2−8x4y3

=2x2y2(2x3+4x2y)=−2x2y2(2x−3+4x2y)

d,a3x2y52a3x4+23a4x2yd,a3x2y−52a3x4+23a4x2y

=a3x2(y52x2+23ay)=a3x2(y−52x2+23ay)

e,a(x+1)b(x+1)=(x+1)(ab)e,a(x+1)−b(x+1)=(x+1)(a−b)

f,2x(x5y)+8y(5yx)f,2x(x−5y)+8y(5y−x)

=2x(x5y)8y(x5y)=(x5y)(2x8y)=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)

g,a(x2+1)+b(1x2)c(x2+1)g,a(x2+1)+b(−1−x2)−c(x2+1)

=(x2+1)(abc)=(x2+1)(a−b−c)

h,9(xy)227(yx)3h,9(x−y)2−27(y−x)3

=9(xy)2+27(xy)3

3 tháng 7 2017

a, \(\left(x^2-y^2\right)-\left(5x+5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

b, \(5x^3-5x^2y-10x^2+10xy\)

\(=5x^2\left(x-y\right)-10x\left(x-y\right)\)

\(=\left(5x-10x\right)\left(x-y\right)=5x\left(x-2\right)\left(x-y\right)\)

c, \(2x^2-5x=x\left(2x-5\right)\)

f, \(3x^2-7x-10=3x^2+3x^2-10x-10\)

\(=3x^2\left(x+1\right)-10\left(x+1\right)=\left(3x^2-10\right)\left(x+1\right)\)

d, \(x^3-3x^2+1-3x=x^3-3x^2-3x+1\)

\(=x^3+x^2-4x^2-4x+x+1\)

\(=x^2\left(x+1\right)-4x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x^2-4x+1\right)\left(x+1\right)\)

e, \(3x^2-6xy+3y^2-12z^2\)

\(=3\left(x^2-2xy+y^2-4z^2\right)\)

\(=3\left[\left(x-y\right)^2-4z^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

g, \(x^4+1-2x^2=\left(x^2-1\right)^2\)

h, \(3x^2-3y^2-12x+12y=3\left(x^2-y^2\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+3y-12\right)\)

\(=3\left(x-y\right)\left(x+y-4\right)\)

j, \(x^2-3x+2=x^2-2x-x+2=x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-1\right)\left(x-2\right)\)

3 tháng 7 2017

a. \(\left(x^2-y^2\right)-5\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

b. \(5x^3-5x^2y-10x^2+10xy\)

\(=5\left[\left(x^3-x^2y\right)-\left(2x^2-2xy\right)\right]\)

\(=5\left[x^2\left(x-y\right)-2x\left(x-y\right)\right]\)

\(=5x\left(x-y\right)\left(x-2\right)\)

c. \(2x^2-5x=x\left(2x-5\right)\)

d. \(x^3-3x^2+1-3x\)

\(=\left(x^3+1\right)-\left(3x^2+3x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left[x^2-x+1-3x\right]\)

\(=\left(x+1\right)\left[x^2-4x+1\right]\)

\(=\left(x+1\right)\left[x^2-2.x.2+2^2-2^2+1\right]\)

\(=\left(x+1\right)\left[\left(x-2\right)^2-3\right]\)

\(=\left(x+1\right)\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)\)

e. \(3x^2-6xy+3y^2-12z^2\)

\(=3\left[x^2-2xy+y^2-4z^2\right]\)

\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3\left(x-y+2z\right)\left(x-y-2z\right)\)

f. \(3x^2-7x-10\)

\(=3x^2-7x-7-3\)

\(=\left(3x^2-3\right)-\left(7x+7\right)\)

\(=3\left(x^2-1\right)-7\left(x+1\right)\)

\(=3\left(x+1\right)\left(x-1\right)-7\left(x+1\right)\)

\(=\left(x+1\right)\left[3\left(x-1\right)-7\right]\)

\(=\left(x+1\right)\left(3x-8\right)\)

g. \(x^4+1-2x^2=\left(x^2\right)^2-2.x^2+1=\left(x^2-1\right)^2\)

\(=\left(x+1\right)^2\left(x-1\right)^2\)

h. \(3x^2-3y^2-12x+12y\)

\(=3\left(x^2-y^2\right)-12\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)-12\left(x-y\right)\)

\(=\left(x-y\right)\left[3\left(x+y\right)-12\right]\)

\(=\left(x-y\right).3.\left(x+y-4\right)\)

j. \(x^2-3x+2=x^2-x-2x+2\)

\(=x\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(x-2\right)\)

P/s: ( Có j sai ns nha nhiều số quá tui rối đầu )

a: Để đây là phép chia hết thì 1-n>0

hay n<=1

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

b: Để đây là phép chia hết thì 2-n>=0

hay n<=2

mà n là số tự nhiên

nên \(n\in\left\{0;1;2\right\}\)

22 tháng 8 2017

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)

5 tháng 1 2018

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)