Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là số nguyên thì n-21 chia hết cho n+10
=>n+10-31 chia hết cho n+10
=>n+10 thuộc {1;-1;31;-31}
=>n thuộc {-9;-11;21;-41}
b: Để B là số nguyên thì 3n+9 chia hết cho n-4
=>3n-12+21 chia hết cho n-4
=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}
=>n thuộc {5;3;7;1;11;-3;25;-17}
c: C nguyên
=>6n+5 chia hết cho 2n-1
=>6n-3+8 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}
mà n nguyên
nên 2n-1 thuộc {1;-1}
=>n thuộc {1;0}
a) để x nguyên
=>13 chia hết n+2
=>n+2= 1 hoặc -1 hoặc -13 hoặc 13
=>n= -1 hoặc -3 hoặc -15 hoặc 11
để B LÀ SỐ NGUYÊN SUY RA TỬ CHIA HẾT CHO MẪU ĐÓ
=> N.(3N+1)+6N-10 CHIA HẾT CHO 3N+1
=>6N+2 -12CHIA HẾT CHO 3N+1
VÌ 6N+2 CHIA HẾT CHO 3N => 12 CHIA HẾT CHO 3N+1
=> 3N +1 THUỘC ƯỚC CỦA 12
SAU ĐÓ BẠN TỰ LẬP BẲNG NHA
<=>n.(3n+1)+6n-10 chia hết cho 3n+1
<=>6n+2-12 chia hết cho 3n+1
Vì 6n+2 chia hết cho 3n=>12 chia hết cho 3n+1
=> 3n ước của 12
Bài 1:
Để \(A=\frac{a-5}{10-a}\) là số hữu tỉ dương
=> \(a-5\ge0\Rightarrow a\ge5\)
\(10-a\ge0\Rightarrow a\ge10\)
KL: a lớn hơn hoặc bằng 10 thì A là 1 số hữu tỉ dương
Bài 2: tìm n thuộc Z, để x = 2n-1/n-1 ; y = n-1/2n-1 là số nguyên ( bài 2 bn thiếu điều kiện thì phải
a) ta có: \(x=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2.\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
Để x nguyên
=> 1/n-1 nguyên
=> 1 chia hết cho n-1
=> n - 1 thuộc Ư(1)={1;-1}
nếu n - 1 = 1 => n = 2 (TM)
n-1 = -1 => n = 0 (TM)
KL:...
b) Để y nguyên
\(\Rightarrow\frac{n-1}{2n-1}\) nguyên
=> n - 1 chia hết cho 2n - 1
=> 2n - 2 chia hết cho 2n - 1
2n - 1 - 1 chia hết cho 2n - 1
mà 2n-1 chia hết cho 2n - 1
=> 1 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(1)={1;-1}
nếu 2n - 1 = 1 => 2n = 2 => n = 1 (TM)
2n - 1 = - 1 => 2n = 0 => n = 0 (TM)
KL:..
a) Để A là phân số thì \(n+4\ne0\)
hay \(n\ne-4\)
b) Để A là số nguyên thì \(n-1⋮n+4\)
\(\Leftrightarrow-5⋮n+4\)
\(\Leftrightarrow n+4\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-3;-5;1;-9\right\}\)
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
a) Để A là phân số
\(\Rightarrow n-1\ne0\)
\(\Rightarrow n\ne1\)
=> A là phân số khi \(n\ne1\)
b) Vì \(n\inℤ\)
\(\hept{\begin{cases}3n+4\inℤ\\n-1\inℤ\end{cases}}\)
mà \(A\inℤ\Leftrightarrow3n+4⋮n-1\)
\(\Rightarrow3n-3+7⋮n-1\)
\(\Rightarrow3\left(n-1\right)+7⋮n-1\)
Vì \(3\left(n-1\right)⋮n-1\)
nên \(7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm7\right\}\)
Lập bảng xét 4 trường hợp ta có :
\(n-1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(n\) | \(2\) | \(0\) | \(8\) | \(-6\) |
Vậy \(n\in\left\{2;0;8;-6\right\}\)
\(\dfrac{10}{n-1}\in Z\Rightarrow n-1=Ư\left(10\right)\)
\(\Rightarrow n-1=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow n=\left\{-9;-4;-1;0;2;3;6;11\right\}\)
Để \(\frac{10}{n-1}\)nguyên thì \(n-1\inƯ\left(10\right)\)
\(\Rightarrow n-1\in\left\{-1,1,10,-10\right\}\)
\(\Rightarrow n-1\in\left\{0,2,-9,11\right\}\)
Vậy \(n\in\left\{0;2;-9;11\right\}\)thì \(\frac{10}{n-1}\)nguyên