Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(32^n+16^n=1024\)
\(\Leftrightarrow\left(2^5\right)^n+\left(2^4\right)^n=2^{10}\)
\(\Leftrightarrow2^{5n}.2^{4n}=2^{10}\)
\(\Leftrightarrow2^{4n+5n}=2^{10}\)
\(\Leftrightarrow9n=10\Leftrightarrow n=\frac{10}{9}\)
2.22.23....2n = 1024
2.22.23....2n = 210
=> 1+2+3+...+n = 10
(n+1).n : 2 = 10
(n+1).n = 10.2
(n+1).n = 20
(n+1).n = 5.4
=> n = 4
Ta có: \(2.2^2.2^3.....2^n=1024\)
\(\Rightarrow2.2^2.2^3......2^n=2^{10}\)
\(\Rightarrow1+2+3+...+n=10\)
\(\Rightarrow n=4\)
1024 = 210
=Từ đề được x>y và cho x=k+y (k>0)
\(2^{y+k}-2^y=2^y.2^k-2^y=2^y.\left(2^k-1\right)\)
=> \(2^y.\left(2^k-1\right)=2^{10}\)
\(2^k-1=2^{10-y}\)
Vì 2k -1 là số lẻ không chia hết cho 2 với k khác 0 mà 2^(10-y) chia hết cho 2 (sai)
Vậy k=0 và y=10 => x=10+0=10
a) \(15+2^n=31\)
\(2^n=16\Rightarrow n=4\)
b) \(2.2^n+4.2^n=6.2^5\)
\(2^n\left(2+4\right)=6.2^5\)
\(2^n.6=6.2^5\Rightarrow n=5\)
c) \(32^n:16^n=1024\)
\(\left(2^5\right)^n:\left(2^4\right)^n=2^{10}\)
\(2^{5n}:2^{4n}=2^{10}\)
\(2^n=2^{10}\Rightarrow n=10\)
d) \(5^n+5^{n+2}=650\)
\(5^n+5^n.25=650\)
\(5^n\left(1+25\right)=650\)
\(5^n.26=650\)
\(5^n=25\Rightarrow n=2\)
e) \(3^n+5.3^{n+1}=432\)
\(3^n+5.3^n.3=432\)
\(3^n\left(1+15\right)=432\)
\(3^n.16=432\)
\(3^n=27\Rightarrow n=3\)
1024=210\(\Rightarrow\)2y.(2m-1)=210.1\(\Rightarrow\hept{\begin{cases}x=11\\y=10\end{cases}}\)
Vậy x=11;y=10
Ai ngang qua đừng quên để lại 1 L_I_K_E!!!!
4n = 1024
4n = 45
=> n = 5