Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3)
a)\(\frac{4n+5}{n}=4+\frac{5}{n}\)nguyen nen n\(\in\)U(5)=\(\left\{1,5\right\}\)vi n thuoc N
b)\(\frac{n+5}{n+1}=1+\frac{4}{n+1}\)nguyen nen (n+1)\(\in U\left(4\right)=\left\{1,2,4\right\}\)vi n+1>-1
=> n\(\in\left\{0,1,3\right\}\)
Bài 1:
a)[(2x-13):7].4 = 12
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
\(\Leftrightarrow\frac{8x-52}{7}=\frac{12}{1}\Rightarrow\left(8x-52\right)1=7.12\)
Chia cả hai vế cho 4 ta đc:
\(\frac{8x-52}{4}=\frac{7.12}{4}\)
\(\Leftrightarrow2x-13=21\)
\(\Leftrightarrow2x=34\)
\(\Leftrightarrow x=17\)
b.1270:[115 - (x-3)] = 254
\(\Leftrightarrow\frac{1270}{118-x}=254\)
\(\Leftrightarrow-\frac{254\left(x-113\right)}{x-118}=0\)
\(\Leftrightarrow-254\left(x-113\right)=0\)
\(\Leftrightarrow x-113=0\)
\(\Leftrightarrow x=113\)
Bài 2:(mk ngu toán CM)
Bài 3:
a)\(\frac{4n+5}{n}=\frac{4n}{n}+\frac{5}{n}=4+\frac{5}{n}\in Z\)
=>5 chia hết n
=>n thuộc Ư(5)
=>n thuộc {1;5) Vì n thuộc N
b)(n+5) chia hết cho (n+1)
=>n+1+4 chia hết n+1
=>4 chia hết n+1
=>n+1 thuộc Ư(4)
=>n+1 thuộc {1;2;4} Vì n thuộc N
=>n thuộc {0;1;3}
c, \(\frac{-32}{-2^n}=4\)
\(\Rightarrow-2^n=-32:4\)
\(\Rightarrow-2^n=-8\)
\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)
d, \(\frac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\Rightarrow n=2\)
e, \(\frac{25^3}{5^n}=25\)
\(\Rightarrow5^n=25^3:25\)
\(\Rightarrow5^n=25^2\)
\(\Rightarrow5^n=5^4\Rightarrow n=4\)
i , \(8^{10}:2^n=4^5\)
\(\Rightarrow2^n=8^{10}:4^5\)
\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)
\(\Rightarrow2^n=2^{30}:2^{10}\)
\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)
k, \(2^n.81^4=27^{10}\)
\(\Rightarrow2^n=27^{10}:81^4\)
\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)
\(\Rightarrow2^n=3^{30}:3^{16}\)
\(\Rightarrow2^n=3^{14}\)
\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn
Bài 2:
1: \(5^n+5^{n+2}=650\)
\(\Leftrightarrow5^n\cdot26=650\)
\(\Leftrightarrow5^n=25\)
hay x=2
2: \(32^{-n}\cdot16^n=1024\)
\(\Leftrightarrow\dfrac{1}{32^n}\cdot16^n=1024\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^n=1024\)
hay n=-10
13: \(9\cdot27^n=3^5\)
\(\Leftrightarrow3^{3n}=3^5:3^2=3^3\)
=>3n=3
hay n=1