\(\in\)Z de cho p/s\(\frac{2n+15}{n+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

\(\frac{2n+15}{n+1}=\frac{2n+2+13}{n+1}=\frac{2\left(n+1\right)+13}{n+1}=\frac{2\left(n+1\right)}{n+1}+\frac{13}{n+1}=2+\frac{13}{n+1}\)

Để \(\frac{2n+15}{n+1}\in Z\) <=> \(n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

n + 1 1 -1 13 -13
n 0 -2 12 -14

Vậy để \(\frac{2n+15}{n+1}\in Z\) thì n = {0;-2;12;-14}

12 tháng 2 2017

\(\frac{2n+15}{n+1}\in Z\Leftrightarrow2n+15⋮n+1\Leftrightarrow2n+2+13⋮n+1\Leftrightarrow2\left(n+1\right)+13⋮n+1\)\(\Leftrightarrow13⋮n+1\) \(\left(vì2\left(n+1\right)⋮n+1\right)\)

\(\Leftrightarrow n+1\inƯ\left(13\right)\Leftrightarrow n+1\in\left\{\pm1;\pm13\right\}\Leftrightarrow n\in\left\{0;-2;12;-14\right\}\)

Vậy\(n\in\left\{0;-2;12;-14\right\}\)

8 tháng 5 2020

Đặt A là tập hợp giá trị của n trong \(\frac{-12}{n}\)

\(\frac{-12}{n}\)là số nguyên => \(n\inƯ\left(-12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

=> \(A=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Đặt B là tập hợp giá trị của n trong \(\frac{15}{n-2}\)

\(\frac{15}{n-2}\)là số nguyên => \(n-2\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

=> \(n\in\left\{3;1;5;-1;7;-3;17;-13\right\}\)

=> \(B=\left\{3;1;5;-1;7;-3;17;-13\right\}\)

Đặt C là tập hợp giá trị của n trong \(\frac{8}{n+1}\)

\(\frac{8}{n+1}\)là số nguyên => \(n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

=> \(n\in\left\{0;-2;1;-3;3;-5;7;-9\right\}\)

=> A \cap\capC = -3 ; 3 

=> n = -3 hoặc n = 3 thì ba phân số đều có giá trị nguyên 

8 tháng 5 2020

A giao B giao C nhé ... Copy ký hiệu nó k hiện

21 tháng 3 2016

A= (n-5)/(n+1) = (n+1-6)/(n+1) = (n+1)/(n+1) - 6/(n+1) = 1-6/(n+1)

để A thuộc Z thì n+1 thuộc Ư(6)...

21 tháng 3 2016

Ta có:

\(\frac{n-5}{n+1}=\frac{\left(n+1\right)-4}{n+1}=\frac{n+1}{n+1}-\frac{4}{n+1}=1-\frac{4}{n+1}\)

Để A \(\in\) Z thì \(\frac{4}{n+1}\in Z\)

\(\Rightarrow\) 4 chia hết cho n + 1

\(\Rightarrow n+1\inƯ_{\left(4\right)}\)

\(\Rightarrow n+1\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow n\in\left\{0;1;3;-2;-3;-5\right\}\)

                                       Vậy \(n\in\left\{0;1;3;-2;-3;-5\right\}\)

Ai k mình, mình k lại.

30 tháng 7 2015

Để P nguyên thì

2n+1 chia hết cho n+5

=> 2n+10-9 chia hết cho n+5

Vì 2n+10 chia hết cho n+5

=> -9 chia hết cho n+5

=> n+5 thuộc Ư(-9)

n+5n
1-4
-1-6
3-2
-3-8
94
-9-14

KL: n thuộc.....................

18 tháng 4 2021

a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)

Ta có : \(2n+5⋮d\)(1) 

\(n+3⋮d\Rightarrow2n+6⋮d\)(2) 

Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

b, Để  \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi 

\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)

\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 31-1
n-2-4
31 tháng 7 2017

a) để A thuộc Z thì x + 2 \(⋮\)3

=> x + 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }

=> x \(\in\){ -1 ; -3 ; 1 ; -5 }

Mấy bài còn lại tương tự

31 tháng 7 2017

a) để A thuộc Z thì x + 2 3

=> x + 2 Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }

=> x { -1 ; -3 ; 1 ; -5 }

8 tháng 5 2020

\(A=\frac{3n-5}{n+4}\) là số nguyên 

\(\Leftrightarrow3n-5⋮n+4\)

\(\Rightarrow3n+12-17⋮n+4\)

\(\Rightarrow3\left(n+4\right)-17⋮n+4\)

Vì \(3\left(n+4\right)⋮n+4\)

\(\Rightarrow17⋮n+4\)

\(\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

\(\Rightarrow n\in\left\{-3;-5;13;-21\right\}\)

Vậy \(n\in\left\{-3;-5;-13;-21\right\}\).

8 tháng 5 2020

\(A=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\)

Để A có giá trị nguyên => \(\frac{17}{n+4}\)có giá trị nguyên

=> \(17⋮n+4\)

=> \(n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

n+41-117-17
n-3-513-21