Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n.\left(n+2\right)}\right)\)
\(=\left(\frac{1.3+1}{1.3}\right).\left(\frac{2.4+1}{2.4}\right).\left(\frac{3.5+1}{3.5}\right)...\left(\frac{n.\left(n+2\right)+1}{n.\left(n+2\right)}\right)\)
\(=\left(\frac{2^2}{1.3}\right).\left(\frac{3^2}{2.4}\right).\left(\frac{4^2}{3.5}\right)...\left(\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\right)\)
\(=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)
\(=\frac{\left(n+1\right)}{1}.\frac{2}{\left(n+2\right)}\)
\(=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}=2.\frac{n+1}{n+2}< 2\)(vì \(\frac{n+1}{n+2}< 1\))
Vậy B < 2
Ta có:
\(1+\frac{1}{1.3}=\frac{4}{1.3}=\frac{2^2}{1.3}\)
\(1+\frac{1}{2.4}=\frac{9}{2.4}=\frac{3^2}{2.4}\)
\(1+\frac{1}{3.5}=\frac{16}{3.5}=\frac{4^2}{3.5}\)
...
\(1+\frac{1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
=>
\(B=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.2.3^2.4^2...\left(n+1\right)\left(n+2\right)}=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}\)
\(=\frac{2\left(n+2\right)-2}{n+2}=2-\frac{2}{n+2}< 2\)
Vậy B < 2
=> \(\frac{4}{1.3}.\frac{9}{2.4}...\frac{n^2}{\left(n-1\right)\left(n+1\right)}=\frac{2015}{1008}\)
<=> \(\frac{2^2.3^2...n^2}{1.3.2.4....\left(n-1\right).\left(n+1\right)}=\frac{2015}{1008}\)
<=> \(\frac{\left(2.3.4....n\right).\left(2.3.4...n\right)}{\left(1.2.3...\left(n-1\right)\right).\left(3.4.5...\left(n+1\right)\right)}=\frac{2015}{1008}\)
<=> \(\frac{n.2}{n+1}=\frac{2015}{1008}\)
=> 1008.2n = 2015.(n+1)
<=> 2016n = 2015n + 2015
<=> n = 2015
*) Bạn hỏi câu này một lần rồi!!!
<=> \(\frac{4}{1.3}.\frac{9}{2.4}...\frac{n^2}{\left(n-1\right)\left(n+1\right)}=\frac{2015}{1008}\)
<=> \(\frac{\left(2.3.4....n\right)^2}{\left(1.2.3...\left(n-1\right)\right).\left(3.4...\left(n+1\right)\right)}=\frac{2015}{1008}\)
<=> \(\frac{\left(2.3.4....n\right).\left(2.3.4....n\right)}{\left(1.2.3...\left(n-1\right)\right).\left(3.4...\left(n+1\right)\right)}=\frac{2015}{1008}\)
<=> \(\frac{n.2}{n+1}=\frac{2015}{1008}\)
<=> 2n.1008 = 2015.(n+1)
<=> 2016n = 2015n + 2015
<=> n = 2015
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)...\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}=\left(1+\frac{1}{1.3}+\frac{1}{2.4}\right)=2.185897436\)
bạn kiểm tra lại đề nhé! vì số hạng tổng quát chẳng liên quan gì đến số hạng đầu
Có thể đề đúng là: \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)....\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}\)
a,A=\(\frac{1}{2}.\left(\frac{2.2}{1.3}.\frac{3.3}{2.4}......\frac{2016.2016}{2015.2017}\right)=\frac{1}{2}.\left(\frac{2.3.4...2016}{1.2....2015}.\frac{2.3.4...2016}{3.4....2017}\right)=\frac{1}{2}.\left(\frac{2016.2}{2017}\right)=\frac{4032}{4034}=\frac{2016}{2017}\)
Hok tốt
\(\left|x\right|=\frac{1}{2}\Rightarrow x=\orbr{\begin{cases}\frac{1}{2}\\-\frac{1}{2}\end{cases}}\)
TH1:\(x=\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}-\frac{3}{2}+5=4\)
TH2:\(x=\frac{-1}{2}\)
\(\Rightarrow\frac{1}{2}+\frac{3}{2}+5=7\)
Vậy
Cậu có thể vào đây tham khảo : http://h.vn/hoi-dap/question/119685.html
chịu thôi bạn ạ ko hiểu gì hết