\(3^n+3^{n+1}+3^{n+2}+3^{n+3}=7085880\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

3^n+3^n+1+3^n+2+3^n+3=7085880

3^n.1+3^n.3+3^n.3^2+3^n.3^3=7085880

3^n(1+3+9+27)=7085880

3^n.40=7085880

3^n=7085880:40

3^n=177147

3^n=3^11

Suy ra:n=11

31 tháng 12 2015

khó vậy đọc đã chóng mặt

31 tháng 12 2015

y và z tỉ lệ nghịch với 2012 và 52 là sao ?

29 tháng 10 2016

a)

\(\left(\frac{1}{3}\right)^n\cdot27^n=3^n\)

\(\Rightarrow\left(\frac{1}{3}\cdot27\right)^n=3^n\)

\(\Rightarrow9^n=3^n\)

\(\Rightarrow\left(3^2\right)^n=3^n\)

\(\Rightarrow3^{2n}=3^n\)

\(\Rightarrow2n=n\)

\(\Leftrightarrow n=0\)

Vậy \(n=0\)

29 tháng 10 2016

d) Ta có:

\(6^{3-n}=216\)

\(\Rightarrow6^{3-n}=6^3\)

\(\Rightarrow3-n=3\)

\(\Rightarrow n=3-3\)

\(\Rightarrow n=0\)

Vậy \(n=0\)\(\text{ }\)

24 tháng 8 2019

a) \(\frac{1}{9}.27^n=3^n\)

\(\Leftrightarrow3^{-2}.3^{3n}=3^n\)

\(\Leftrightarrow3^{3n-2}=3^n\)

\(\Leftrightarrow3n-2=n\)

\(\Leftrightarrow2n=2\)

\(\Leftrightarrow n=1\)

24 tháng 8 2019

b)\(3^{-2}.3^4.3^n=3^7\)

\(\Leftrightarrow3^{2+n}=3^7\)

\(\Leftrightarrow2+n=7\)

\(\Leftrightarrow n=5\)

3 tháng 10 2019

a) \(9.27^n=3^5\Rightarrow3^2.\left(3^3\right)^n=3^5\)

\(\Rightarrow3^2.3^{3n}=3^5\Rightarrow3^{5n}=3^5\)

\(\Rightarrow5n=5\Rightarrow n=1\)

b)\(\left(2^3:4\right).2^n=4\Rightarrow\left(2^3:2^2\right).2^n=2^2\)

\(\Rightarrow2.2^n=2^2\Rightarrow2^{1+n}=2^2\)

\(\Rightarrow1+n=2\Rightarrow n=1\)

c)\(3^2.3^4.3^n=3^7\Rightarrow3^{6+n}=3^7\)

\(\Rightarrow6+n=7\Rightarrow n=1\)

d)\(2^{-1}.2^n+4.2^n=9.2^5\)

\(\Rightarrow2^n\left(2^{-1}+4\right)=3^2.2^5\)

\(\Rightarrow\)\(2^n\left(\frac{1}{2}+4\right)=3^2.2^5\)

\(\Rightarrow\)\(2^n.\frac{3^2}{2}=3^2.2^5\)

\(\Rightarrow\)\(2^{n-1}.3^2=3^2.2^5\)

\(\Rightarrow n-1=5\Rightarrow n=6\)

e)\(243\ge3^n\ge9.3^2\)

\(\Rightarrow3^5\ge3^n\ge3^2.3^2\)

\(\Rightarrow3^5\ge3^n\ge3^4\)

\(\Rightarrow5\ge n\ge4\Rightarrow5;4\)

f)\(2^{n+3}.2^n=128\)

\(\Rightarrow2^{n+3+n}=2^7\)

\(\Rightarrow2^{2n+3}=2^7\)

\(\Rightarrow2n+3=7\Rightarrow2n=4\Rightarrow n=2\)

Hok tối

13 tháng 7 2015

3n+3n+1+3n+2+3n+3=7085880

=>3n.(1+3+32+33)=7085880

=>3n.(1+3+9+27)=7085880

=>3n.40=7085880

=>3n=7085880:40

=>3n=177147

=>3n=311

=>n=11

13 tháng 7 2015

3n+3n+1+3n+2+3n+3=7085880

3n.1+3n.3+3n.32+3n.33=7085880

3n.(1+3+32+33)=7085880

3n.40=7085880

3n=177147

3n=311

=>n=11

20 tháng 12 2016

A = 31+32 + 33+...32015

\(\Rightarrow\)3A= 32 + 33+...+32016

\(\Rightarrow\)2A = 3A -A = 32016 -3

\(\Rightarrow\)2A +3 = 32016

vậy n = 2016

13 tháng 8 2018

Ta có :

      A= 31+32+33+34+....+32015

=>3A= 32+33+34+35+....+32016

=>3A- A=(32+33+34+35+....+32016) - (31+32+33+34+....+32015)

=>2A=32016-3

=>2A +3 =32016

Vậy n = 2016

c, \(\frac{-32}{-2^n}=4\)

\(\Rightarrow-2^n=-32:4\)

\(\Rightarrow-2^n=-8\)

\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)

d, \(\frac{8}{2^n}=2\)

\(\Rightarrow2^n=8:2\)

\(\Rightarrow2^n=4\)

\(\Rightarrow2^n=2^2\Rightarrow n=2\)

e, \(\frac{25^3}{5^n}=25\)

\(\Rightarrow5^n=25^3:25\)

\(\Rightarrow5^n=25^2\)

\(\Rightarrow5^n=5^4\Rightarrow n=4\)

i , \(8^{10}:2^n=4^5\)

\(\Rightarrow2^n=8^{10}:4^5\)

\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)

\(\Rightarrow2^n=2^{30}:2^{10}\)

\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)

k, \(2^n.81^4=27^{10}\)

\(\Rightarrow2^n=27^{10}:81^4\)

\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)

\(\Rightarrow2^n=3^{30}:3^{16}\)

\(\Rightarrow2^n=3^{14}\)

\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn 

8 tháng 7 2015

\(A=1+3+3^2+3^3+...+3^{101}\)

\(3A=3+3^2+3^3+3^4+...+3^{101}\)

\(3A-A=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)

\(2A=3^{101}-1\)

\(A=\left(3^{101}-1\right):2\)

8 tháng 7 2015

Thu gọn tổng sau:

A=1+3+32+33+...+3100 

B= 2100-299-298-297-...-22-2

C= 3100-399+398-397-...+32-3+1