Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
n+4:n+2
n+2+2:n+2
ma n+2:n+2
suy ra 2:n+2
n+2 là ước của 2
ước của 2 là :1,-1,2,-2
n+2=1 suy ra n=1-2 suy ra n=?
các trường hợp khác làm tương tự nhà và cả phần b nữa
3n+7:n+1
(3n+3)+3+7:n+1
3(n+1)+10:n+1
ma 3(n+1):n+1
suy ra 10:n+1 va n+1 thuoc uoc cua 10
den day lam nhu phan tren la duoc
nhớ **** mình nha
n + 4\(⋮\)n+2
=> ( n + 2) + 2 \(⋮\)n + 2 mà n + 2\(⋮\)n+2
=>2 \(⋮\)n+ 2
=> n +2\(\in\)Ư(2)={1;2}
=> n \(\in\){ -1:0} mà n \(\in\)N
=> n\(\in\){0}
Vậy n= 0
a) 3n+11 chi hết cho n
mà 3n cũng chia hết cho n
=> 3n+11- 3n chia hết cho n
=> 11 chia hết cho n
=> n thuộc ước 11=> n thuộc { 1; -1; 11;-11}
\(3n=3n-3+3=3\left(n-1\right)+3\)
3n chia hết cho n - 1 khi và chỉ khi n - 1 là ước của 3
=> \(n-1\in\left\{1;3;-1;-3\right\}\)
=> \(n\in\left\{2;4;0;-2\right\}\)
Chúc bạn làm bài tốt
\(\left(3n-2\right)⋮\left(n+1\right)\Leftrightarrow\left(3n+3-5\right)⋮\left(n+1\right)\Leftrightarrow\left[3\left(n+1\right)-5\right]⋮\left(n+1\right)\)
mà [3(n+1)]\(⋮\)(n+1) => 5\(⋮\)(n+1) <=> \(n+1\inƯ\left(5\right)=\){-5;-1;1;5} <=>n\(\in\){-6;-2;0;4}
câu 2 làm tương tự
Bạn vào câu hỏi tương tự ý
\(\frac{3n-5}{n-2}\in Z\)
\(\frac{3n-5}{n-2}=\frac{3n-6+1}{n-2}=\frac{3\left(n-2\right)+1}{n-2}\)
\(=3+\frac{1}{n-2}\)
\(\Rightarrow n-2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)