K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

a)n=1

b)n=9

c)n=4

d)n=8

2 tháng 12 2018

17 chia hết cho 2n + 1 

=> 2n + 1 thuộc Ư ( 17 ) = { -17 ; -1 ;  1 ; 17 }

Do n thuộc N => 2n + 1 thuộc N

=> 2n + 1 = { 1 ; 17 }

Ta có bảng :

 2n + 1         1          17
   n         0          8

Vậy n = { 0 ; 8 } thỏa mãn yêu cầu đề bài 

2 tháng 12 2018

=>    2n+1   thuộc Ư(17)    =  { 1; 17  }

=>       2n thuộc   {  0 ; 16   }

=>       n thuộc     {  0; 8  }

17 tháng 1 2017

A/n=2,4

b/n=-1

27 tháng 1 2021

a, \(2n+5⋮n-1\)

\(2\left(n-1\right)+7⋮n-1\)

\(7⋮n-1\)hay \(n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n - 11-17-7
n208-6

b, Công thức tổng quát : \(A\left(x\right).B\left(x\right)=0\Rightarrow\orbr{\begin{cases}A\left(x\right)=0\\B\left(x\right)=0\end{cases}}\)

\(\left(2n+3\right)\left(n-4\right)=0\Leftrightarrow\orbr{\begin{cases}n=-\frac{3}{2}\\n=4\end{cases}}\)

c, \(\left|x-3\right|< 3\Leftrightarrow-3< x-3< 3\)

\(\Leftrightarrow-3+3< x< 3+3\Leftrightarrow0< x< 6\)

Vậy \(x\in\left\{1;2;3;4;5;\right\}\)

27 tháng 1 2021

giải chi tiết ra giúp mk nhé các bn!thanks các bn nhiều ^^

13 tháng 2 2016

a) n+5 chia hết cho n-1

Ta có: n+5 = (n-1)+6 

=> n-1  và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}

=> n\(\in\){0;2;-1;3;-2;4;-5;7}

b) n+5 chia hết cho n+2

Ta có: n+5 = (n+2)+3 

=> n+2  và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}

=> n\(\in\){-3;-1;-5;1;}

c) 2n-4 chia hết cho n+2

Ta có: 2n-4 = 2(n+2)-8

=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}

=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}

d) 6n+4 chia hết cho 2n+1

Ta có: 6n+4 = 3(2n+1)+1 

=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}

=> n\(\in\){-1;0}

e) 3-2n chia hết cho n+1

Ta có: 3-2n= -2(1+n)+5 

=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}

=> n\(\in\){-2;0;-6;4;}

26 tháng 9 2017

a) \(\frac{4n+1}{2n-1}=\frac{4n-2+3}{2n-1}=\frac{2.\left(2n-1\right)+3}{2n-1}\)

\(=2+\frac{3}{2n-1}\). Vì \(2\in Z\Rightarrow\frac{3}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(3\right)\)

\(\Rightarrow2n-1\in\left\{-3;-1;1;3\right\}\)

\(\Rightarrow2n\in\left\{-2;0;2;4\right\}\)

\(\Rightarrow n\in\left\{-1;0;1;2\right\}\)

b)\(\frac{2n+5}{n+2}=\frac{2n+4+1}{n+2}=\frac{2.\left(n+2\right)+1}{n+2}\)

\(=\frac{2.\left(n+2\right)}{n+2}+\frac{1}{n+2}=2+\frac{1}{n+2}\). Vì \(2\in Z\Rightarrow n+2\inƯ\left(1\right)\)

\(\Rightarrow n+2\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{-3;-1\right\}\)

c) \(\frac{2n-3}{n-2}=\frac{2n-4+1}{n-2}=\frac{2.\left(n-2\right)+1}{n-2}\)

\(=\frac{2.\left(n-2\right)}{n-2}+\frac{1}{n-2}=2+\frac{1}{n-2}\)

Vì \(2\in Z\Rightarrow\frac{1}{n-2}\in Z\Rightarrow n-2\inƯ\left(1\right)\)

\(\Rightarrow n-2\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{1;3\right\}\)

26 tháng 9 2017

Ta có: \(4n+1⋮2n-1\Leftrightarrow4n-2+3⋮2n+1\)\(\Leftrightarrow2\left(2n-1\right)+3⋮2n-1\Leftrightarrow3⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow2n=\left\{-2;0;2;4\right\}\)

Vì \(n\in N\)nên \(n=\left\{0;1;2\right\}\)