Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n+2 + 4n+3 + 4n+4 + 4n+5 = 85. ( 22016 : 2 2012)
=> 4n.16 + 4n.64 + 4n.256 + 4n.1024 = 85.24
=> 4n.(16 + 64 + 256 + 1024) = 85.16
=> 4n.1360 = 1360
=> 4n = 1 = 40
=> n = 0
a) ta có : \(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2+2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)\(\Leftrightarrow\) \(A=2^{2018}-1\)
\(\Rightarrow2\left(A+1\right)=2\left(2^{2018}-1+1\right)=2\left(2^{2018}\right)=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)
b) ta có : \(A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2\left(2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow2A=2^2+2^3+2^4...+2^{2018}\) \(\Rightarrow2A-A=A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)\(\Leftrightarrow\) \(A=2^{2018}-2\)
\(\Rightarrow2A+4=2\left(2^{2018}-2\right)+4=2^{2019}-4+4=2^{2019}=2^{n+1}\)
\(\Rightarrow2019=n+1\Leftrightarrow n=2019-1=2018\) vậy \(n=2018\)
\(A=15+22+29+...+127+134\)
\(=\frac{\left(134+15\right)\left[\left(134-15\right):7+1\right]}{2}\)
\(=\frac{149.18}{2}\)
\(=2682:2\)
\(=1341\)
\(b,4^{n+2}+4^{n+3}+4^{n+4}+4^{n+5}=85.\left(2^{2016}:2^{2012}\right)\)
\(\Rightarrow4^n\left(4^2+4^3+4^4+4^5\right)=85.2^4\)
\(\Rightarrow4^n.1360=1360\)
\(\Rightarrow4^n=1=4^0\)
\(\Rightarrow n=0\)