\(2\cdot2^2+3.2^3+4\cdot2^4+.....+n\cdot2^n=2^{n+10}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2015

\(\Leftrightarrow2^n.\left(2^{-1}+4\right)=9.2^5\)

\(\Leftrightarrow2^n.4,5=4,5.2^6\)

\(\Rightarrow2^n=2^6\)

\(\Rightarrow n=6\)

4 tháng 10 2015

giai ho to bai nay dc k

 

12 tháng 2 2020

Đặt \(A=2.2^2+3.2^3+...+n.2^n\)

\(\Rightarrow2A=2.2^3+3.2^4+...+n.2^{n+1}\)

\(\Rightarrow A-2A=\)\(2.2^2+3.2^3+...+n.2^n\)\(-2.2^3-3.2^4-...-n.2^{n+1}\)

\(\Rightarrow-A=2.2^2+2^3+2^4+...+2^n-n.2^{n+1}\)

\(\Rightarrow-A=2^2+\left(2^2+2^3+2^4+...+2^{n+1}\right)-\left(n+1\right).2^{n+1}\)

\(\Rightarrow A=-2^2-\left(2^2+2^3+2^4+...+2^{n+1}\right)+\left(n+1\right).2^{n+1}\)

Đặt \(K=\left(2^2+2^3+2^4+...+2^{n+1}\right)\)

\(2K=\left(2^3+2^4+2^5+...+2^{n+2}\right)\)

\(2K-K=\left(2^3+2^4+2^5+...+2^{n+2}\right)\)\(-\left(2^2+2^3+2^4+...+2^{n+1}\right)\)

\(K=2^{n+2}-2^2\)

\(\Rightarrow A=-2^2-2^{n+2}+2^2+\left(n+1\right).2^{n+1}\)

\(\Rightarrow A=\left(n+1\right).2^{n+1}-2^{n+2}\)

\(\Rightarrow A=2^{n+1}\left(n+1-2\right)\)

\(\Rightarrow A=2^{n+1}\left(n-1\right)=2^{n+5}\Rightarrow2^4=n-1\Rightarrow n=17\)

9 tháng 9 2016

a)n=1

b)n=4

c)n=1

d)n=6

e)n=-1

3 tháng 1 2016

\(\frac{2^n}{2}+2^2.2^n=9.2^5\)

=> \(2^{n-1}+2^{2+n}=2^5.9\)

=> \(2^{n-1}+2^{n-1+3}=2^5.9\)

=> \(2^{n-1}.\left(1+2^3\right)=2^5.9\)

=> \(2^{n-1}.9=2^5.9\)

=> \(2^{n-1}=2^5\)

=> \(n-1=5\)

Vậy n = 6.

3 tháng 1 2016

Ta có:

\(\frac{2^n}{2}+2^2.2^n=2^{n-1}+2^3.2^{n-1}=2^{n-1}.\left(1+2^3\right)\)

\(=2^{n-1}.9=9.2^5\)

Chia cả 2 vế cho 9 thì có:

\(2^{n-1}=2^5\Rightarrow2^n=2^6\Rightarrow n=6\)