Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x thuộc Z để A thuộc Z nha mn :)
Để \(A\inℤ\) thì \(2A\inℤ\)
Ta có: \(2A=\frac{2\left(x-1\right)}{2x+3}=\frac{2x-2}{2x+3}=\frac{2x+3-5}{2x+3}=1-\frac{5}{2x+3}\)
Vì \(1\inℤ\)\(\Rightarrow\) Để \(2A\inℤ\)thì \(5⋮2x+3\)
\(\Rightarrow2x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng giá trị ta có:
\(2x+3\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(2x\) | \(-8\) | \(-4\) | \(-2\) | \(2\) |
\(x\) | \(-4\) | \(-2\) | \(-1\) | \(1\) |
Thay các giá trị của x vào A ta thấy tất cả đều thoả mãn \(A\inℤ\)
Vậy \(x\in\left\{-4;-2;-1;1\right\}\)
a) ta có: \(-3x=5y\Rightarrow\frac{x}{5}=\frac{y}{-3}\)
ADTCDTSBN
có: \(\frac{y}{-3}=\frac{x}{5}=\frac{y-x}{-3-5}=\frac{20}{-8}=\frac{5}{2}\)
=> y/-3 = 5/2 => y = -15/2
x/5 = 5/2 => x = 25/2
KL:...
b) ta có: \(\frac{2x}{3}=\frac{3y}{4}\Rightarrow8x=9y\Rightarrow\frac{x}{9}=\frac{y}{8}\)
\(\frac{3y}{4}=\frac{4z}{5}\Rightarrow15y=8z\Rightarrow\frac{y}{8}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{8}=\frac{z}{15}\)
ADTCDTSBN
có: \(\frac{x}{9}=\frac{y}{8}=\frac{z}{15}=\frac{x+y+z}{9+8+15}=\frac{49}{32}\)
=> x/9 = 49/32 => x = ...
...
Ta có: \(\frac{x-1}{2}=\frac{2\left(x-1\right)}{2.2}=\frac{2x-2}{4}\)
\(\frac{y-2}{3}=\frac{3\left(y-2\right)}{3.3}=\frac{3y-6}{9}\)
\(\Rightarrow\)\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)
\(=\frac{50-2-6+3}{9}=5\)
Ta có: \(\frac{2x-2}{4}=5\Rightarrow x=11\)
\(\frac{3y-6}{9}=5\Rightarrow y=17\)
\(\frac{z-3}{4}=5\Rightarrow z=23\)
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)
=> \(\hept{\begin{cases}\frac{x-1}{2}=5\\\frac{y-2}{3}=5\\\frac{z-3}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5.4=20\end{cases}}\) => \(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)
Vậy ...
a) I 5x+4I +7=26 b) 3 I 9-2xI - 17=16
I 5x+4 I = 26-7 3 I 9-2xI=16+17
I 5x+4 I =19 3 I 9-2xI=33
=> 5x+4=19 hoặc 5x+4=-19 I 9-2xI=33:3=11
5x = 19-4=15 hoặc 5x=-19-4=-23 => 9-2x=11 hoặc 9-2x=-11
-2x=11-9=2 hoặc -2x=-11+9=-2
x=2:(-2)=-1 hoặc x=-2:(-2)=1
a) \(\left|5x+4\right|+7=26\)
\(\Rightarrow\left|5x+4\right|=26-7\)
\(\Rightarrow\left|5x+4\right|=19\)
\(\Rightarrow\orbr{\begin{cases}5x+4=19\\5x+4=-19\end{cases}\Rightarrow\orbr{\begin{cases}5x=19-4\\5x=-19-4\end{cases}\Rightarrow}\orbr{\begin{cases}5x=15\\5x=-23\end{cases}\Rightarrow}\orbr{\begin{cases}x=15:5\\x=-23:5\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-4,6\end{cases}}}\)
Vậy \(x\in\left\{3;-4,6\right\}\)
b) \(3\left|9-2x\right|-17=16\)
\(\Rightarrow3\left|9-2x\right|=16+17\)
\(\Rightarrow3\left|9-2x\right|=23\)
\(\Rightarrow\left|9-2x\right|=23:3\)
\(\Rightarrow\left|9-2x\right|=\frac{23}{3}\)
\(\Rightarrow\orbr{\begin{cases}9-2x=\frac{23}{3}\\9-2x=-\frac{23}{3}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{23}{3}+9\\2x=-\frac{23}{3}+9\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{23}{3}+\frac{27}{3}\\2x=-\frac{23}{3}+\frac{27}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{50}{3}\\2x=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{50}{3}:3\\x=4:2\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{50}{3}\times\frac{1}{3}\\x=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{50}{9}\\x=2\end{cases}}}\)
Vậy \(x\in\left\{\frac{50}{9};4\right\}\)
Chúc bạn học tốt!
Ta có: \(1+2^2+3^2+4^2+...+99^2+100^2\) (đề đúng)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)+100\left(101-1\right)\)
\(=\left(1.2+2.3+3.4+...+99.100+100.101\right)-\left(1+2+3+...+100\right)\)
\(=\frac{1.2.3+2.3.3+...+100.101.3}{3}-\frac{\left(100+1\right)\left[\left(100-1\right)\div1+1\right]}{2}\)
\(=\frac{1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+100.101.\left(102-99\right)}{3}-5050\)
\(=\frac{1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-99.100.101+100.101.102}{3}-5050\)
\(=\frac{100.101.102}{3}-5050\)
\(=343400-5050\)
\(=338350\)
\(A=\left(2x^2y^3\right).\left(-3x^3y^4\right)\)
\(A=-6x^5y^7\)
- Hệ số: -6
- Bậc của đa thức A: 12
|1/2x| = 3 - 2x
ĐKXĐ : 3 - 2x \(\ge\)0 => 2x \(\ge\) 3 => x \(\ge\)3/2
Ta có: |1/2x| = 3 - 2x
=> \(\orbr{\begin{cases}\frac{1}{2}x=3-2x\\\frac{1}{2}x=-3+2x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{1}{2}x+2x=3\\\frac{1}{2}x-2x=-3\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=3\\-\frac{3}{2}x=-3\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{6}{5}\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
=> x = 2
|5x| = x - 12
ĐKXĐ : x - 12 \(\ge\)0 => x \(\ge\)12
Ta có: |5x| = x - 12
=> \(\orbr{\begin{cases}5x=x-12\\5x=-x+12\end{cases}}\)
=> \(\orbr{\begin{cases}5x-x=-12\\5x+x=12\end{cases}}\)
=> \(\orbr{\begin{cases}4x=-12\\6x=12\end{cases}}\)
=> \(\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)(ktm)
=> pt vô nghiệm
|2x - 5| = x + 1
ĐKXĐ: x + 1 \(\ge\)0 => x \(\ge\)-1
Ta có: |2x - 5| = x + 1
=> \(\orbr{\begin{cases}2x-5=x+1\\2x-5=-x-1\end{cases}}\)
=> \(\orbr{\begin{cases}2x-x=1+5\\2x+x=-1+5\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\3x=4\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=\frac{4}{3}\end{cases}}\)(tm)
Vậy ...
|7 - 2x| + 7 = 2x
=> |7 - 2x| = 2x - 7
ĐKXĐ: 2x - 7 \(\ge\)0 => 2x \(\ge\) 7 => x \(\ge\) 7/2
Ta có: |7 - 2x| = 2x - 7
=> \(\orbr{\begin{cases}7-2x=2x-7\\7-2x=7-2x\end{cases}}\)
=> 7 + 7 = 2x + 2x
hoặc x tùy ý (TMĐK)
=> 4x = 14 => x = 7/2
hoặc x tùy ý (Tm ĐK)
Vậy ...
Làm mẫu câu a nhé:
Ta có: \(2x=3y\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}\)
Áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=5\)
\(\Rightarrow x=3.5=15\)
\(y=5.2=10\)
Ý 1:
\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x^2-y^2}{3^2-2^2}=\frac{25}{5}=5\)
=> x,y=...
\(\frac{x}{3}=\frac{y}{4}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{3x-2y}{3.3-2.4}=\frac{5}{1}=5\)
=>x,y=...
\(3x=2y=5z\Leftrightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{y-2x}{5-2.2}=\frac{5}{1}=5\)
=>x,y,z=....
bài này sai đề kqra số dài (thập phân)
khỏi làm nha thêm 5 phút nửa mà ko cho là khỏi làm