Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là ab (ab là số tự nhiên; a, b khác 0). Ta có:
ab = a.b.3
10.a + b = a.b.3
=> ab chia hết cho 3
=> a + b chia hết cho 3
Mà ab chia hết cho a mà 10.a chia hết cho a nên b cũng phải chia hết cho a (Ta cũng có 10.a + b chia hết cho b mà b chia hết cho b nên 10.a cũng chia hết cho b).
=> 10.a có dạng b.k (10>=k>=1) (*)
Thay vào, ta có:
b.k + b = a.b.3
b.(k+1) = a.b.3
k+1 = 3.a
=> k+1 chia hết cho 3
=> k+1 = 3, 6, 9
Thay vào (*)
+ Với k+1 = 3 thì a = 1, khi đó b = 10.1:2 = 5
+ Với k+1 = 6 thì a = 2, khi đó b = 10.2:5 = 4
+ Với k+1 = 9 thì a = 3, khi đó b = 10.3:8 <lẻ>
Vậy ab có 2 kết quả cần tìm là 15 và 24
Học tốt~~
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số cần tìm là ab (ab là số tự nhiên; a, b khác 0). Ta có:
ab = a.b.3
10.a + b = a.b.3
=> ab chia hết cho 3
=> a + b chia hết cho 3
Mà ab chia hết cho a mà 10.a chia hết cho a nên b cũng phải chia hết cho a (Ta cũng có 10.a + b chia hết cho b mà b chia hết cho b nên 10.a cũng chia hết cho b).
=> 10.a có dạng b.k (10>=k>=1) (*)
Thay vào, ta có:
b.k + b = a.b.3
b.(k+1) = a.b.3
k+1 = 3.a
=> k+1 chia hết cho 3
=> k+1 = 3, 6, 9
Thay vào (*)
+ Với k+1 = 3 thì a = 1, khi đó b = 10.1:2 = 5
+ Với k+1 = 6 thì a = 2, khi đó b = 10.2:5 = 4
+ Với k+1 = 9 thì a = 3, khi đó b = 10.3:8 <lẻ>
Vậy ab có 2 kết quả cần tìm là 15 và 24
Gọi số cần tìm là ab (ab là số tự nhiên; a, b khác 0). Ta có:
ab = a.b.3
10.a + b = a.b.3
=> ab chia hết cho 3
=> a + b chia hết cho 3
Mà ab chia hết cho a mà 10.a chia hết cho a nên b cũng phải chia hết cho a (Ta cũng có 10.a + b chia hết cho b mà b chia hết cho b nên 10.a cũng chia hết cho b).
=> 10.a có dạng b.k (10>=k>=1) (*)
Thay vào, ta có:
b.k + b = a.b.3
b.(k+1) = a.b.3
k+1 = 3.a
=> k+1 chia hết cho 3
=> k+1 = 3, 6, 9
Thay vào (*)
+ Với k+1 = 3 thì a = 1, khi đó b = 10.1:2 = 5
+ Với k+1 = 6 thì a = 2, khi đó b = 10.2:5 = 4
+ Với k+1 = 9 thì a = 3, khi đó b = 10.3:8 <lẻ>
Vậy ab có 2 kết quả cần tìm là 15 và 24
![](https://rs.olm.vn/images/avt/0.png?1311)
15 nha <?>?!@#$%*)&^^
không hiểu hãy kết bạn giải cho
Gọi số cần tìm là ab ( a khác 0 ; a,b < 10 )
Ta có :
ab : ( a x b ) = 3
hay ab = ( a x b ) x 3
a x 10 + b = a x b x 3
Vì a x 10 + b > a x 10 do đó a x b x 3 > a x 10 \(\Rightarrow\)b > 3
Nếu b = 4 thì :
a x 4 x 3 = a4
a x 12 = a x 10 + 4
a x 12 - a x 10 = 4
a x 2 = 4
a = 2
Ta có : ( 2 x 4 ) x 3 = 24 ( Đ )
Vậy số đó là 24
Nếu b = 5 thì :
a x 5 x 3 = a5
a x 15 = a x 10 + 5
a x 15 - a x 10 = 5
a x 5 = 5
a = 1
Ta có : ( 1 x 5 ) x 3 = 15 ( Đ )
Vậy số đó là 15
Vậy hai số thỏa mãn đề bài là 24 và 15
Đ/S : ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số tự nhiên đó là ab.
axbx3=ab
=>axb=ab:3
=> ab=24
Gọi số đó là ab (a; b là chữ số; a khác 0)
Theo đề bài:
ab = a x b x 3
a x 10 + b = a x b x 3
Nếu b = 0 thì ab = 0 (Loại)
Do đó, a x 10 < a x b x 3 => 10 < b x 3 => b = 4; 5; 6; …; 9
b = 4 thì a x 10 + 4 = a x 12 => 4 = a x 2 => a = 2. Vậy ab = 24
b = 5 thì a x 10 + 5 = a x 15 => 5 = a x 5 => a = 1. Vậy ab = 15
b = 6 thì a x 10 + 6 = a x 18 => 6 = a x 8 (Loại)
b = 7 thì a x 10 + 7 = a x 21 => 7 = a x 11 (Loại)
b = 8; 9 (Loại)
Vậy số cần tìm là 24 hoặc 15.
![](https://rs.olm.vn/images/avt/0.png?1311)
100a+10b+c=5.a.b.c
c chia hết cho 5 nên c = 5
20a+2b+1=5.a.b(<=>5a-2)(4-b)+9=0)(b>4)
2b+1 chia hết cho 5=>b=2,7(2 loại)
b=7, a=1
thử lại 1 * 7 * 5=35
35*5=175
vậy abc = 175
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài giải: Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)
Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a.
Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (1)
Từ phép tính (1) ta có a < 2, nên a = 1. Thay a = 1 vào (1) ta được :
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (2)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (2) ta được :
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại : 1804 + 180 + 18 + 1 = 2003
vậy 4 số cần tìm là : 1084;180;18;1
Gọi số tự nhiên đó là \(ab\)( \(ab\)là chữ số ,khác 0 )
Theo đề bài :
\(ab=a\times b\times3\)
\(a\times10+b=a\times b\times3\)
Nếu \(b=0\)thì \(ab=0\left(ktm\right)\)
Do đó \(a\times10< a\times b\times3\Rightarrow10< b\times3\Rightarrow b=4;5;6;.......;9\)
\(b=4\)thì \(a\times10+4=a\times14\Rightarrow4=a\times2\Rightarrow a=2\Rightarrow ab=24\left(tm\right)\)
\(b=5\Rightarrow a\times10+5=a\times15\Rightarrow5=a\times5\Rightarrow a=1\Rightarrow ab=15\left(tm\right)\)
\(b=6\Rightarrow a\times10+6=a\times18=6=a\times8\left(ktm\right)\)
\(b=7\Rightarrow a\times10+7=a\times21=7=a\times21\left(ktm\right)\)
\(b=8;9\left(ktm\right)\)
Vậy số cần tìm là \(15;24\)
Bạn kia cop bạn nhé
Bạn cop trên web bạn à
HT