K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 14: Gọi số cần tìm là x

x chia 5 dư 3

=>x-3⋮5

=>x-3+5⋮5

=>x+2⋮5(1)

x chia 7 dư 5

=>x-5⋮7

=>x-5+7⋮7

=>x+2⋮7(2)

Từ (1),(2) suy ra x+2∈BC(5;7)

mà x nhỏ nhất

nên x+2=BCNN(5;7)

=>x+2=35

=>x=33

Vậy: Số cần tìm là 33

Bài 13: Gọi số cần tìm có dạng là \(\overline{ab}\)

Nếu lấy số đó chia cho tổng các chữ số của nó thì được thương là 3, dư là 5

=>\(\overline{ab}=3\cdot\left(a+b\right)+5\)

=>10a+b=3a+3b+5

=>7a-2b=5

=>(a;b)∈{(1;1);(3;8)}

Thử lại, ta thấy a=3;b=8 thỏa mãn

vậy: Số cần tìm là 38

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
11 tháng 12 2017

gọi số đó là a

ta có a chia 7 dư 5 và a chia 13 dư 4

suy ra a-5 chia hết cho 7 và a-4 chia hết cho 13

suy ra a-5+14 chia hết cho7 và a-4+13 chia hết cho 13

suy ra a+9 chia hết cho 7 và a+9 chia hết cho 13

suy ra a+9 thuộc bội chung của 7 và 13 suy ra a+9 chia hết cho bội chung nhỏ nhất của 7 và 13

suy ra a+9 chia hết cho 91 suy ra a+9-91 chia hết cho 91

suy ra a-82 chia hết cho 91 suy ra a chia 91 dư 82

4 tháng 12 2020

Bài 1 :

Theo bài ra ta có :

  \(\hept{\begin{cases}x+5⋮6\\x+5⋮8\end{cases}\Rightarrow x+5\in BC\left(6;8\right)}\) và \(x⋮5\)

lại có :

\(6=2.3\)

\(8=2^3\) 

\(\Rightarrow BCNN\left(6;8\right)=2^3.3=24\)

\(BC\left(6;8\right)=B\left(24\right)=\left\{0;24;48;72;96;.......;720;744;768;792;...\right\}\)

\(\Rightarrow x+5\in\left\{0;24;48;72;96;....;720;744;768;792;...\right\}\)

\(\Rightarrow x\in\left\{19;43;67;91;.....;715;739;763;787;...\right\}\)

Vì 700<x<800 và x \(⋮5\) 

nên \(\Rightarrow x=715\) 

vậy số cần tìm là 715

Bài 2 

Gọi số sách cần tìm là x (x\(\in\) N*/100\(\le x\le\) 150)

Theo bài ra ta có :

\(\hept{\begin{cases}x⋮10\\x⋮12\\x⋮15\end{cases}\Rightarrow x\in BC\left(10;12;15\right)}\) 

lại có :

\(10=2.5\)

\(12=2^2.3\)

\(15=3.5\)

\(\Rightarrow BCNN\left(10;12;15\right)=2^2.3.5=60\)

\(BC\left(10;12;15\right)=B\left(60\right)=\left\{0;60;120;....\right\}\)

Vì 100\(\le x\le150\) nên => x = 120 

Vậy số sách cần tìm là 120 quyển 

4 tháng 12 2020

120 quển nhé mình lười giải lắm :))))