Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\cdot B=2017\cdot2018\cdot x^5y^{2n+2}\cdot z^{11-2m}\)
để hai đơn thức đồng dạng thì 2n+2=10 và 11-2m=5
=>n=4 và m=3
h) \(8< 2^n\le2^9.2^{-5}\Leftrightarrow2^3< 2^n\le2^4\) \(\Rightarrow3< n\le4\)
Vì n là số tự nhiên nên n = 4
k) \(27< 81^3:3^n< 243\Leftrightarrow3^3< 3^{12-n}< 3^5\Rightarrow3< 12-n< 5\Leftrightarrow7< n< 9\)
Vì n là số tự nhiên nên n = 8
l) \(\left(5n+1\right)^2=\frac{36}{49}\Leftrightarrow\left(5n+1\right)^2=\left(\frac{6}{7}\right)^2\Rightarrow5n+1=\frac{6}{7}\) (vì n là số tự nhiên)
=> n = -1/35 (không tm)
m) \(\left(n-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\Leftrightarrow\left(n-\frac{2}{9}\right)^3=\left(\frac{4}{9}\right)^3\Rightarrow n-\frac{2}{9}=\frac{4}{9}\Leftrightarrow n=\frac{2}{3}\left(ktm\right)\)
n) \(\left(8n-1\right)^{2m+1}=5^{2m+1}\Leftrightarrow8n-1=5\Leftrightarrow n=\frac{3}{4}\left(ktm\right)\) (cần thêm đk của m)
h)
\(8< 2^2\le2^9.2^{-5}\)
\(\Rightarrow2^3< 2^n\le2^4\)
\(\Rightarrow2^n=2^4\Rightarrow n=4\)
\(m-1⋮2m+1\)
\(\Rightarrow2m-2⋮2m+1\)
\(\Rightarrow2m+1-3⋮2m+1\)
\(\Rightarrow3⋮2m+1\)
tu lam
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot5\cdot2\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)