K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

Ta có:

\(G=x^2+3y^2+2xy-6y+3\)

\(G=\left(x^2+2xy+y^2\right)+\left(2y^2-6y+\frac{18}{4}\right)-\frac{3}{2}\)

\(G=\left(x+y\right)^2+2\left(y-\frac{3}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+y\right)^2=0\\2\left(y-\frac{3}{2}\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

Vậy Min(G) = -3/2 khi \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

28 tháng 10 2020

G = x2 + 3xy2 + 2xy - 6y + 3

<=> G = ( x2 + 2xy + y2 ) + ( y2 - 6y + 9 ) - 6

<=> G = ( x + y )2 + ( y - 3 )2 - 6

Vì ( x + y )2\(\ge\)0 ; ( y - 3 )2\(\ge\)0\(\forall\)x ; y

=> G = ( x + y )2 + ( y - 3 )2 - 6\(\ge\)- 6

Dấu "=" xảy ra <=>\(\orbr{\begin{cases}\left(x+y\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\y=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\y=3\end{cases}}\)

Vậy minG = - 6 <=> x = - 3 ; y = 3

28 tháng 9 2020

Đề có thiếu không vậy ? 

28 tháng 9 2020

À ờ bài này vẫn làm được :)

A = x2 + 3y2 + 2xy + 4y + 5

= ( x2 + 2xy + y2 ) + ( 2y2 + 4y + 2 ) + 3

= ( x + y )2 + 2( y2 + 2y + 1 ) + 3

= ( x + y )2 + 2( y + 1 )2 + 3 ≥ 3 ∀ x

Dấu "=" xảy ra <=> x = 1 ; y = -1

=> MinA = 3 <=> x = 1 ; y = -1

23 tháng 9 2016

A chỉ đạt max

B=(x^2+y^2+1-2xy+2x-2y)+(x^2-4x+4)-10

B=(x-y+1)^2+(x-2)^2-10\(\ge\)-10

C=((x^2+y^2-2xy)-10(x-y)+25)+3(y^2-2y+1)+4

C=(x-y-5)^2+3(y-1)^2+4\(\ge\)4

4 tháng 8 2016

=(3x+3y)-(x^2+2xy+y^2)=3(x+y)-(x+y)^2=k rõ nữa

=(4x^2-4xy) -(6y^2-6xy)= 4x(x-y)+6y(x-y)=2(x-y)(2x+3y)

21 tháng 10 2015

= x^2 - 2x + 1 + 2y^2 - 6y + 2014

= ( x - 1 )^2 + 2( y^2 - 2.3/2.y + 9/4 - 9/4 + 1007 )

= ( x - 1 )^2 + 2[ ( y - 3/2 )^2 + 4019/4 ]

Ta có: ( x - 1 )^2 và ( y - 3/2 )^2 > hoặc = 0 với mọi x, y

=> ( x - 1 )^2 và ( y - 3/2 )^2 nhỏ nhất = 0

=> 0 + 2.0 + 2.4019/4 = 4019/2

12 tháng 8 2018

Ta có : \(5x-x^2+13=-x^2+5x+13\)

\(=-\left(x^2-5x-13\right)\)

\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}-13\right]\)

\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{77}{4}\right]\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\)

Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\))

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\le\dfrac{77}{4}\) hay \(A\le0\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\))

Vậy Max A=\(\dfrac{77}{4}\) tại x=\(\dfrac{5}{2}\)

13 tháng 8 2018

Câu này mình làm rồi, cần 2 câu trên thôi. Mk có cách giải khác ngắn hơn nhiều

6 tháng 11 2016

phân tích đa thức có dạng m2 + n ( n thuộc z)

6 tháng 11 2016

bàn làm giúp mình đk ko ạ!

15 tháng 7 2018

.

giúp mk đi. Mk đag cần gấp