Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
chắc là x + 3 nhỉ :v
A = (x - 1)(x + 2)(x + 3)(x + 6)
A = [(x - 1)(x + 6)][(x + 2)(x + 3)]
A = (x^2 + 5x - 6)(x^2 + 5x + 6)
đặt x^2 + 5x = t
=> A = (t - 6)(t + 6)
A = t^2 - 36
t^2 > 0
=> A > -36
Xét A = -36 khi t = 0
=> x^2 + 5x = 0
=> x(x + 5) = 0
=> x = 0 hoặc x = -5
vậy Min A = -36 khi x = 0 hoặc x = -5
M=(x−1)(x+6)(x+3)(x+2)(x−1)(x+6)(x+3)(x+2)
=(x2+5x−6)(x2+5x+6)(x2+5x−6)(x2+5x+6)
Đặt x2+5x=ax2+5x=a thì thay vào M :
M=(a−6)(a+6)=a2−36(a−6)(a+6)=a2−36
Do a2≥0a2≥0(∀a∀a)⇒⇒a2−36≥−36(∀a)a2−36≥−36(∀a)
Vậy MinA = -36⇔a2=0⇔a=0⇔a2=0⇔a=0
Hay x(x+5)=0⇒[x=0x=−5
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
Lời giải:
Áp dụng BĐT AM-GM:
$P=(a+1)+\frac{2}{a+1}+2\geq 2\sqrt{(a+1).\frac{2}{a+1}}+2=2\sqrt{2}+2$
Vậy $P_{\min}=2\sqrt{2}+2$
Giá trị này đạt tại $(a+1)^2=2; a>0\Leftrightarrow a=\sqrt{2}-1$
------------------------
Bổ sung ĐK: $a>1$
$X=\frac{a^2-1+2}{a-1}=a+1+\frac{2}{a-1}$
$=(a-1)+\frac{2}{a-1}+2$
$\geq 2\sqrt{2}+2$ (AM-GM)
Vậy $X_{\min}=2\sqrt{2}+2$
Giá trị đạt tại $(a-1)^2=\sqrt{2}; a>1\Leftrightarrow a=\sqrt{2}+1$
#)Giải :
a, Ta có : \(x^2-y^2\ge\frac{\left(x+y\right)^2}{2}=2\)
=> Min = 2 khi x = y = 1
-Trả Lời:
a,Ta có:
\(x+y=2\)
\(\Rightarrow x^2+2xy+y^2=4\)
\(\Leftrightarrow x^2+y^2=4-2xy\)
\(\Rightarrow4-2xy\)nhỏ nhất
\(\Rightarrow xy\)lớn nhất
Mà \(x+y=2\Rightarrow x,y\)Không thể là 2 số âm
Vì ta cần \(xy\) lớn nhất nên \(x,y\)không thể khác dấu
\(\Rightarrow\)Ta chỉ còn một trường hợp \(x,y\)đều dương và \(x+y=2\)
\(\Rightarrow xy\)lớn nhất khi và chỉ khi \(x=2;y=0\)và \(x=0;y=2\)
@#Chúc bạn học tốt#@
Nhớ k mình nha. Thank you!
Còn phần b mình không biết làm, mong bạn thông cảm.
Áp dụng bất đẳng thức AM-GM ta có :
\(B=\frac{12}{x-1}+\frac{x-1+1}{3}=\frac{12}{x-1}+\frac{x-1}{3}+\frac{1}{3}\ge2\sqrt{\frac{12}{x-1}\cdot\frac{x-1}{3}}+\frac{1}{3}=4+\frac{1}{3}=\frac{13}{3}\)
Dấu "=" xảy ra <=> \(\frac{12}{x-1}=\frac{x-1}{3}\Rightarrow x=7\left(x\ge1\right)\). Vậy MinB = 13/3
Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)
Vậy \(P_{min}=-7\) khi x = 2
\(A=x^2-x\)
\(A=x^2-x+\frac{1}{4}-\frac{1}{4}\)
\(A=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)
Min \(A=\frac{-1}{4}\Leftrightarrow x=\frac{1}{2}\)
A=x2-x
Ta có: \(x^2\ge0\forall x\)
=> \(x^2-x\ge-x\forall x\)
Vậy MinA= -x <=> x=0
Ơ, hình như não với bài của mình đang bị lag lag đâu đó '-'?