![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ukm
It's very hard
l can't do it
Sorry!
![](https://rs.olm.vn/images/avt/0.png?1311)
# Bài 1
* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương
* Với \(x,y>0\) áp dụng (1) ta có
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)
* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)
Áp dụng (2) với x , y > 0 ta có
\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)
* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)
\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xra khi \(x=y=4\)
Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Q=\frac{2"1-x"+2x}{1-x}+\frac{"1-x"+x}{x}\)
\(=\frac{2+2x}{1-x}+\frac{1-x}{x+1}=\frac{2x}{1-x}+\frac{1-x}{x+3}\)
Do \(0< x< 1\)nên sử dụng bdt Co-si cho hai số dương ta có:
\(\frac{2x}{1-x}+\frac{1-x}{x\ge2}\sqrt{2}\)
Từ đó ta cộng hai vế của bdt cho 3 ta được :
\(H\ge2\sqrt{2}+3\)
\(\Rightarrow minQ=2\sqrt{2}+3\)
Dấu \("="\)xảy ra khi: \(\frac{2x}{1-x}=\frac{1-x}{x}\Leftrightarrow x^2+2x-1=0\Leftrightarrow x=-1+\sqrt{2}\) do \(0< x< 1\)
P/s: Thay dấu ngoặc kép thành ngoặc đơn nha, ko chắc đâu
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(A=\dfrac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\)
\(=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)+2\sqrt{x}}{\sqrt{x}\left(x-1\right)}\)
\(=\dfrac{x\sqrt{x}+x+\sqrt{x}+1+x-\sqrt{x}+2\sqrt{x}}{\sqrt{x}\left(x-1\right)}\)
\(=\dfrac{x\sqrt{x}+2x+2\sqrt{x}+1}{\sqrt{x}\left(x-1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)+2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
b: Để A<0 thì \(\sqrt{x}-1< 0\)
=>0<x<1
![](https://rs.olm.vn/images/avt/0.png?1311)
Để giá trị căn được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)
Đề có sai gì không bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
Tacó \(\Delta\)=(-7)2-4x1x2=41>0 =>\(\sqrt{_{ }x1}\)=\(\dfrac{7+\sqrt{41}}{2}\)=>\(_{x1}\)=\(\dfrac{\left(7+\sqrt{41}\right)^2}{4}\)=\(\dfrac{45+7\sqrt{41}}{2}\) =>\(\sqrt{_{ }x2}\)=\(\dfrac{7-\sqrt{41}}{2}\)=>\(_{x_2}\)=\(\dfrac{\left(7-\sqrt{41^{ }}\right)^2}{4}\)=\(\dfrac{45-7\sqrt{41}}{2}\) so sánh với điều kiện X>_0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=-2\left[\left(1-x\right)-\sqrt{1-x}+\frac{1}{4}\right]+2+\frac{1}{2}=-2\left(\sqrt{1-x}-\frac{1}{2}\right)^2+\frac{5}{2}\le\frac{5}{2}\)
Max P = 5/2 khi 1-x =1/4 =>x =3/4
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=-2\left[\left(1-x\right)-2.\frac{\sqrt{1-x}}{4}+\frac{1}{16}\right]+2+\frac{1}{8}=-2\left(\sqrt{1-x}-\frac{1}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)
Max P=17/8 khi 1-x =1/16 hay x = 15/16
\(P=-2\left[\left(1-x\right)-\frac{2\sqrt{1-x}}{4}+\frac{1}{16}\right]+\frac{1}{8}=-2\left(\sqrt{1-x}-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\)
Max P = 1/8 khi 1- x =1/16 => x =1-1/16 =15/16