\(\frac{10x^2+6x+3}{x^2+2}\)

giúp mik nha 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

\(Q=\frac{10x^2+6x+3}{x^2+2}\)

\(Q=\frac{x^2+2+9x^2+6x+1}{x^2+2}\)

\(Q=\frac{x^2+2}{x^2+2}+\frac{9x^2+6x+1}{x^2+2}\)

\(Q=1+\frac{\left(3x+1\right)^2}{x^2+2}\)

Vì \(\left(3x+1\right)^2\ge0\forall x\)

\(\Rightarrow Q\ge1+0=1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow3x+1=0\Leftrightarrow x=\frac{-1}{3}\)

Vậy \(Q_{min}=1\Leftrightarrow x=\frac{-1}{3}\)

17 tháng 12 2019

a) \(\frac{2x-7}{10x-4}-\frac{3x+5}{4-10x}\)

\(=\frac{2x-7}{10x-4}-\frac{-\left(3x+5\right)}{-\left(4-10x\right)}\)

\(=\frac{2x-7}{10x-4}-\frac{5-3x}{10x-4}\)

\(=\frac{2x-7-\left(5-3x\right)}{10x-4}\)

\(=\frac{2x-7-5+3x}{10x-4}\)

\(=\frac{5x-12}{10x-4}\)

7 tháng 10 2020

a) \(A=x^2+6x+1=\left(x^2+2\cdot x\cdot3+3^2\right)-8\)

\(=\left(x+3\right)^2-8\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> \(\left(x+3\right)^2-8\ge-8\forall x\)

Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3

Vậy Amin = -8 khi x = -3

b) \(2x^2+10x-5=2\left(x^2+5x-\frac{5}{2}\right)\)

\(=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{35}{2}\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\)

Vì (x + 5/2)2 \(\ge0\forall x\)

=> \(2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\ge-\frac{35}{2}\forall x\)

Dấu " = " xảy ra khi và chỉ khi (x + 5/2)2 = 0 => x = -5/2

Vậy Bmin = -35/2 khi x = -5/2

c) \(x^2-5x=\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{25}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\)

Vì (x - 5/2)2 \(\ge\)0 với mọi x

=> \(\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)

Dấu " = " xảy ra khi và chỉ khi (x - 5/2)2 = 0 => x = 5/2

Vậy Cmin = -25/4 khi x = 5/2

16 tháng 11 2019

Ta có:

\(\frac{2}{x^2+2x}+\frac{2}{x^2+6x+8}+\frac{2}{x^2+10x+24}+\frac{1}{x+6}\)

\(\frac{2}{x\left(x+2\right)}+\frac{2}{x^2+4x+2x+8}+\frac{2}{x^2+4x+6x+24}+\frac{1}{x+6}\)

\(\frac{2}{x\left(x+2\right)}+\frac{2}{x\left(x+4\right)+2\left(x+4\right)}+\frac{2}{x\left(x+4\right)+4\left(x+6\right)}+\frac{1}{x+6}\)

\(\frac{2}{x\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}+\frac{1}{x+6}\)

\(\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+6}+\frac{1}{x+6}\)

\(\frac{1}{x}\)

18 tháng 8 2020

1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)

\(\Leftrightarrow35x-5+60x=96-6x\)

\(\Leftrightarrow95x-5=96-6x\)

\(\Leftrightarrow95x+6x=96+5\)

\(\Leftrightarrow101x=101\)

\(\Leftrightarrow x=1\)

2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) 

\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)

\(\Leftrightarrow30x+9=36+24+32x\)

\(\Leftrightarrow30x+9=32x+60\)

\(\Leftrightarrow30x-32x=60-9\)

\(\Leftrightarrow-2x=51\)

\(\Leftrightarrow x=-\frac{51}{2}\)

3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)

\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)

\(\Leftrightarrow2x+1=5x+1\)

\(\Leftrightarrow2x=5x\)

\(\Leftrightarrow x=0\)

19 tháng 8 2020

4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)

=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)

=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)

=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)

=> 27 - 9x + 80 - 16x = 12 - 12x - 48

=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0

=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0

=> 143 - 13x = 0

=> 13x = 143

=> x = 11

5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)

=> 6x - 18 + 7x - 35 - 13x - 4 = 0

=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0

=> -57 = 0(vô nghiệm)

6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)

=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)

=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)

=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)

=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)

=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)

=> \(12x+10-10x-3=12x+2\)

=> \(2x+10-3=12x+2\)

=> 2x + 10 - 3 - 12x - 2 = 0

=> (2x - 12x) + (10 - 3 - 2) = 0

=> -10x + 5 = 0

=> -10x = -5

=> x = 1/2

7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)

=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)

=> 6x - 3 - 5x + 10 - x - 7 = 0

=> (6x - 5x - x) + (-3 + 10 - 7) = 0

=> 0x + 0 = 0

=> 0x = 0

=> x tùy ý

Bài 8 tự làm nhé

1 tháng 7 2017

a ) MTC : \(2x\left(x+3\right)\left(x-3\right)\)

\(\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)

\(\frac{3-2x}{x^2-9}=\frac{3-2x}{\left(x-3\right)\left(x+3\right)}=\frac{2x\left(3-2x\right)}{2x\left(x+3\right)\left(x-3\right)}\)

b ) MTC : \(2\left(-x\right)\left(x-1\right)^2\)

\(\frac{2x-1}{x-x^2}=\frac{2x-1}{-x\left(x-1\right)}=\frac{2\left(2x-1\right)\left(x-1\right)}{2\left(-x\right)\left(x-1\right)^2}\)

\(\frac{x+1}{2-4x+2x^2}=\frac{x+1}{2\left(x^2-2x+1\right)}=\frac{-x\left(x+1\right)}{2\left(-x\right)\left(x-1\right)^2}\)

4 tháng 5 2017

mình 2k4 ko bt làm

6 tháng 5 2017

 a)    \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)

\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)

\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))

\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\)   KHI X= -1

c)  \(D=x^2-2x+y^2+4y+7\)

\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)

\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)

\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2

e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !

         \(E=\frac{x^2-4x+1}{x^2}\)

\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)

ĐẶT    \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2

Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm 

2 tháng 5 2017

đáng lẽ phải là x^2+2x+3 chứ bạn 

y-1=(3x^2+10x+11)/(x^2+2x+3)-1

y-1=(3x^2+10+11-x^2-2x-3)/(x^2+2x+3)

y-1=(2x^2+8x+8)/(x^2+2x+3)

y-1=2(x+2)^2/(x^2+2x+3)>=0

y>=1

=>Min y=1 khi x+2=0 hay x=-2 

y-4=(3x^2+10x+11)/(x^2+2x+3)-4

y-4=(3x^2+10x+11-4x^2-8x-12)/(x^2+2x+3)

y-4=(-x^2+2x-1)/(x^2+2x+3)

y-4=-(x-1)^2/(x^2+2x+3)<=0

y<=4 

=>Max y=4 khi x-1=0 hay x=1 

12 tháng 11 2017

tau dell biết

mi hỏi ngu như chó vậy, về hỏi cho xem nó có biết ko