\(\frac{2010x+2011\sqrt{1-x^2}+2012}{\sqrt{1-x^2}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)

\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)

11 tháng 12 2019

\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)

\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)

Làm nốt

21 tháng 5 2021

mik nghĩ đề sai lẽ ra phải là P=\(\dfrac{2010+2011\sqrt{1-x^2}+2012}{\sqrt{1-x^2}}\)(\(-1\le x\le1\))

P=\(\dfrac{2010}{\sqrt{1-x^2}}+2011+\dfrac{2012}{\sqrt{1-x^2}}=\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012}{\sqrt{\left(1-x\right).\left(1+x\right)}}+2011\)

áp dụng BDT CÔ SI \(\sqrt{\left(1-x\right)\left(1+x\right)}\le\dfrac{1-x+1+x}{2}=1\)

=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2010\left(1\right)\)

tương tự \(\dfrac{2012}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2012\left(2\right)\)

cộng vế (1)(2)=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012.}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2012+2010=4022\)

=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012}{\sqrt{\left(1+x\right)\left(1-x\right)}}+2011\ge4022+2011=6033\)

dấu = xảy ra khi và chỉ khi x=0

vậy min P=6033

21 tháng 11 2016

Điều kiện \(\hept{\begin{cases}x-2011>0\\y-2012>0\\z-2013>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2011\\y>2012\\z>2013\end{cases}}}\)

\(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{\sqrt{x-2011}}-\frac{1}{x-2011}+\frac{1}{\sqrt{y-2012}}-\frac{1}{y-2012}+\frac{1}{\sqrt{z-2013}}-\frac{1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\left(\frac{1}{x-2011}-\frac{1}{\sqrt{x-2011}}+\frac{1}{4}\right)+\left(\frac{1}{y-2012}-\frac{1}{\sqrt{y-2012}}+\frac{1}{4}\right)+\left(\frac{1}{z-2013}-\frac{1}{\sqrt{z-2013}}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2011}}-\frac{1}{4}\right)^2+\left(\frac{1}{\sqrt{y-2012}}-\frac{1}{4}\right)^2+\left(\frac{1}{\sqrt{z-2013}}-\frac{1}{4}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{\sqrt{x-2011}}=\frac{1}{4}\\\frac{1}{\sqrt{y-2012}}=\frac{1}{4}\\\frac{1}{\sqrt{z-2013}}=\frac{1}{4}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2011=16\\y-2012=16\\z-2013=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2027\\y=2028\\z=2029\end{cases}}}\)

29 tháng 9 2017

Ta có :   \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)

    \(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)

        nhân theo vế của ( 1 ) ; ( 2 ) , ta có :

     \(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)

    \(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)

  rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :

     \(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)

     \(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)

     \(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\) 

       \(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)

  A = 2017 

 ( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :)   )

29 tháng 9 2017

2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)

\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)

\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)

Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)

\(\Leftrightarrow x=2015;y=2016;z=2017\)

26 tháng 11 2019

Áp dụng BĐT Cô - si ngược dấu :

\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4\left(x-2010\right)}\le\frac{4+\left(x-2010\right)}{4}\)

\(\Rightarrow\sqrt{x-2010}-1\le\frac{4+\left(x-2010\right)}{4}-1=\frac{x-2010}{4}\)

\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}\le\frac{1}{4}\)

Hoàn toàn tương tự với những phân thức còn lại 

\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2010=4\\x-2011=4\\z-2012=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=2014\\y=2015\\z=2016\end{cases}}}\)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

25 tháng 10 2016
  • \(\sqrt{2012-2\sqrt{2011}}+1=\sqrt{\left(\sqrt{2011}-1\right)^2}+1=\sqrt{2011}\)
  •  

\(\frac{x^2+x+1}{x^2-x+1}=\frac{3\left(x^2+x+1\right)}{3\left(x^2-x+1\right)}=\frac{\left(x^2-x+1\right)+2\left(x^2+2x+1\right)}{3\left(x^2-x+1\right)}=\frac{2\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{1}{3}\ge\frac{1}{3}\)(1)

\(\frac{x^2+x+1}{x^2-x+1}=\frac{3\left(x^2-x+1\right)-2\left(x^2-2x+1\right)}{x^2-x+1}=-\frac{2\left(x-1\right)^2}{x^2-x+1}+3\le3\)(2)

Từ (1) và (2) suy ra đpcm

25 tháng 10 2016

Mình cảm ơn

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại