Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải :
\(A=a^2+ab+b^2-3a-3b+2014\)
\(A=\frac{1}{2}\left(2a^2+2ab+2b^2-6a-6b+4028\right)\)
\(A=\frac{1}{2}\left[\left(a^2+2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)+4010\right]\)
\(A=\frac{1}{2}\left[\left(a+b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2+4010\right]\)
Dấu "=" không xảy ra nha bạn, bạn xem lại đề
\(P=\frac{a^3}{2a+3b}+\frac{b^3}{3a+2b}=\frac{a^4}{2a^2+3ab}+\frac{b^4}{3ab+2b^2}\)
\(P\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+6ab}\ge\frac{\left(a^2+b^2\right)^2}{2\left(a^2+b^2\right)+3\left(a^2+b^2\right)}=\frac{a^2+b^2}{5}=\frac{2}{5}\)
Dấu "=" xảy ra khi \(a=b=1\)
Thật sự á, cái đề làm t đau đầu từ sáng giờ, nhờ cmt của bạn Arima Kousei t mới làm đc!
Đề đúng là tìm min của \(M=\frac{3a^4+3b^4+c^3+2}{\left(a+b+c\right)^3}\)
Áp dụng BĐT Cô - si cho 4 số không âm, ta được:
\(3a^4+1=a^4+a^4+a^4+1\ge4\sqrt[4]{a^{12}}=4a^3\)
Tương tự ta có: \(3b^4+1\ge4b^3\)
\(\Rightarrow M=\frac{3a^4+3b^4+c^3+2}{\left(a+b+c\right)^3}\ge\frac{4a^3+4b^3+c^3}{\left(a+b+c\right)^3}\)
Ta có BĐT phụ \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)(*)
Thật vậy (*)\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
\(\Rightarrow M\ge\frac{4a^3+4b^3+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b\right)^3+c^3}{\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^3}{4\left(a+b+c\right)^3}=\frac{1}{4}\)
Đẳng thức xảy ra khi a = b = 1; c = 2
P/S: Sai nữa thì chịu ,mình đã cố gắng hết sức
\(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\)
\(\Leftrightarrow\frac{a-b}{a\left(a+b\right)}+\frac{a+b}{a\left(a-b\right)}=\frac{3a-b}{\left(a-b\right)\left(a+b\right)}\)
\(\Leftrightarrow\frac{\left(a-b\right)^2+\left(a+b\right)^2}{a\left(a-b\right)\left(a+b\right)}=\frac{3a^2-ab}{a\left(a-b\right)\left(a+b\right)}\)
\(\Leftrightarrow a^2-2ab+b^2+a^2+2ab+b^2=3a^2-ab\)
\(\Leftrightarrow2a^2+2b^2=3a^2-ab\)
\(\Leftrightarrow a^2-ab=2b^2\)
\(\Leftrightarrow\left(a^2+ab\right)-\left(2ab+2b^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-2b\right)=0\Rightarrow\orbr{\begin{cases}a=-b\left(l\text{do }\left|a\right|\ne\left|b\right|\right)\\a=2b\left(TM\right)\end{cases}}\)
Thay a = 2b vào B tự tính
B sai đề
Ta luôn có
\(x^2+2xy+y^2=\left(x+y\right)^2\) ( hẳng đẳng thức )
\(\Rightarrow A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)
\(=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(3a-2b\right)^2\)
\(=\left[\left(2a-3b\right)+\left(3a-2b\right)\right]^2\)
\(=\left(2a-3b-2b+3a\right)^2\)
\(=\left(a-b\right)^2\)
\(=10^2\)
\(=100\)
\(R=\left(a^2+ab+\frac{1}{4}b^2\right)-3a-\frac{3}{2}b+\frac{3}{4}b^2-\frac{3}{2}b+2021\)
\(=\left(a+\frac{b}{2}\right)^2-3\left(a+\frac{b}{2}\right)^2+\frac{9}{4}+3\left(\frac{1}{4}b^2-\frac{1}{2}b+\frac{1}{4}\right)+2018\)
\(=\left(a+\frac{b}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2+2018\ge2018\forall a;b\)
Dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)
\(R=\left(a^2+ab+\frac{1}{4}b^2\right)\)\(-3a-\) \(\frac{3}{2}b\) + \(\frac{3}{4}b^2-\frac{3}{4}b+2021\)
\(\Leftrightarrow\left(a+\frac{b}{2}\right)^2-3\left(a+\frac{b}{2}\right)^2\)\(+\frac{9}{4}+3\left(\frac{1}{4}b^2-\frac{1}{2}b+\frac{1}{4}+2018\right)\)
\(\Leftrightarrow\left(a+\frac{b}{2}-\frac{3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2\)\(+2018\ge2018\forall a;b\)
\(Lưu\) \(ý\) \(:dấu\) \(=có\) \(thể\) \(thay\) \(thế\) \(dấu\) \(\Leftrightarrow\)
Ta có P = a2 + ab + b2 - 3a - 3b + 1989
= \(\left(a^2+ab+\frac{1}{4}b^2\right)-3a+\frac{3}{2}b+\frac{9}{4}+\frac{3}{4}b^2-\frac{9}{2}b+\frac{27}{4}+1980\)
= \(\left(a^2+ab+\frac{1}{4}b^2\right)-3\left(a-\frac{1}{2}b\right)+\frac{9}{4}+\frac{3}{4}b^2-3.\frac{3}{2}.2\frac{1}{2}b+\frac{27}{4}+1980\)
= \(\left(a+\frac{1}{2}b\right)^2-3\left(a-\frac{1}{2}b\right)+\frac{9}{4}+3\left(\frac{1}{4}b^2-2.\frac{3}{2}.\frac{1}{2}b+\frac{9}{4}\right)+1980\)
= \(\left(a+\frac{1}{2}b-\frac{3}{2}\right)^2+3\left(\frac{1}{2}b-\frac{3}{2}\right)^2+1980\ge1980\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a+\frac{1}{2}b-\frac{3}{2}=0\\\frac{1}{2}b-\frac{3}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}a+\frac{1}{2}b=\frac{3}{2}\\b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)
Vậy Min P = 1980 <=> a = 0 ; b = 3