\(Min_M=x^2+y^2-xy-x+y+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

k mk đi làm ơn 

mk đang bị âm điểm

2 tháng 4 2017

bạn giúp mình đi làm ơn

mình đang ko biết cách làm

1 tháng 9 2019

\(a,x^2+y^2-x-y=8\)

\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}-8,5=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5=0\)

Ta có : \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5\ge-8,5\forall x;y\)

Để VP=0 và là các số nguyên 

=>\(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=8,5\)

1 tháng 9 2019

a/ x^2 + y^2 - x - y = 8

<=> 4x^2 + 4y^2 - 4x - 4y = 32

<=> (2x - 1)^2 + (2y - 1)^2 = 34

<=> (2x - 1)^2 = 9 và (2y - 1)^2 = 25

Hoặc (2x - 1)^2 = 25 và (2y - 1)^2 = 9

30 tháng 11 2017

Ta có \(\hept{\begin{cases}x^2+xy+y^2=19\\x-xy+y=-1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-xy=19\\x+y-xy=-1\end{cases}}\).
Suy ra \(\left(x+y\right)^2-\left(x+y\right)=20\).
Đăt \(x+y=1\) ta được 
\(t^2-t=20\Leftrightarrow\left(t+4\right)\left(t-5\right)=0\) \(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-5=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}t=-4\\t=5\end{cases}}\).
Với \(t=-4\Rightarrow x+y=-4\)\(\Leftrightarrow y=-4-x\) ta có:
\(x-xy+y=x-x\left(-4-x\right)-4-x=-1\) \(=x^2+4x-4=-1\) \(\Leftrightarrow x^2+4x-3=0\)\(\Leftrightarrow\left(x+2\right)^2=7\)\(\Leftrightarrow\orbr{\begin{cases}x+2=\sqrt{7}\\x+2=-\sqrt{7}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{7}\\x=-2-\sqrt{7}\end{cases}}\).
Tương tự cho t = 5.

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi

ĐKXĐ : \(x,y\ne0\)\(;\)\(x\ne y\)

\(a)\) \(P=\frac{2}{x}-\left(\frac{x^2}{x^2-xy}+\frac{x^2-y^2}{xy}-\frac{y^2}{y^2-xy}\right):\frac{x^2-xy+y^2}{x-y}\)

\(P=\frac{2}{x}-\left(\frac{x^2y}{xy\left(x-y\right)}+\frac{\left(x-y\right)^2\left(x+y\right)}{xy\left(x-y\right)}+\frac{xy^2}{xy\left(x-y\right)}\right):\frac{x^2-xy+y^2}{x-y}\)

\(P=\frac{2}{x}-\left(\frac{xy\left(x+y\right)+\left(x-y\right)^2\left(x+y\right)}{xy\left(x-y\right)}\right):\frac{x^2-xy+y^2}{x-y}\)

\(P=\frac{2}{x}-\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x-y\right)}.\frac{x-y}{x^2-xy+y^2}\)

\(P=\frac{2y}{xy}-\frac{x+y}{xy}=\frac{y-x}{xy}\)

\(b)\)

+) Với \(\left|2x-1\right|=1\)\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)

Mà \(x\ne0\) ( ĐKXĐ ) nên \(x=1\)

+) Với \(\left|y+1\right|=\frac{1}{2}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y+1=\frac{1}{2}\\y+1=\frac{-1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{-1}{2}\\y=\frac{-3}{2}\end{cases}}}\)

Thay \(x=1;y=\frac{-1}{2}\) vào \(A=\frac{y-x}{xy}\) ta được : \(A=\frac{\frac{-1}{2}-1}{1.\frac{-1}{2}}=\frac{\frac{-3}{2}}{\frac{-1}{2}}=3\)

Thay \(x=1;y=\frac{-3}{2}\) vào \(A=\frac{y-x}{xy}\) ta được : \(A=\frac{\frac{-3}{2}-1}{1.\frac{-3}{2}}=\frac{\frac{-5}{2}}{\frac{-3}{2}}=\frac{15}{4}\)

Vậy ... 

23 tháng 12 2018

Cảm ơn nè <3