\(G=\frac{1}{2\left(x+1\right)^2+1}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

Ta có : \(2\left(x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow G=\frac{1}{2\left(x+1\right)^2+1}\le1\)

Dấu ''='' xảy ra khi x = -1

Vậy GTLN của G bằng 1 tại x = -1 

24 tháng 8 2021

G = 0

k cho mình nhé

11 tháng 9 2019

a) Đầu bài có đúng ko ?

11 tháng 9 2019

b) \(B=|x-1|+|x-2|\)

\(=|x-1|+|2-x|\ge|x-1+2-x|\)

Hay \(B\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(2-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\2-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>2\end{cases}\left(loai\right)}\)

\(\Leftrightarrow1\le x\le2\)

Vậy \(B_{min}=1\Leftrightarrow1\le x\le2\)

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
6 tháng 8 2018

ĐK:  \(x\ne\left\{0;-1;-2;-3\right\}\)

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)

\(\Leftrightarrow\)\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)

\(\Leftrightarrow\)\(-\frac{1}{x+3}=\frac{1}{2017}\)

\(\Rightarrow\)\(x+3=-2017\)

\(\Leftrightarrow\)\(x=-2020\)

Vậy...

6 tháng 8 2018

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2017}\)

\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)

\(\frac{1}{x}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2017}\)

\(-\frac{1}{x+3}=\frac{1}{2017}\)

\(-2017=x+3\)

\(x=-2020\)

20 tháng 1 2020

3. 

a) thay vào hàm số y=f(x)=-2x+3, ta đc:

f(-2)=-2.(-2)+3=7

f(-1)=-2.(-1)+3=5

f(0)=-2.0+3=3

\(f\left(-\frac{1}{2}\right)=-2.\left(-\frac{1}{2}\right)+3=4\)

\(f\left(\frac{1}{2}\right)=-2.\frac{1}{2}+3=2\)

31 tháng 7 2019

d) \(D=|x+\frac{1}{2}|+|y-\frac{1}{5}|+|x+\frac{1}{4}|\)

\(=\left(|x+\frac{1}{2}|+|x+\frac{1}{4}|\right)+|y-\frac{1}{5}|\)

Đặt  \(F=|x+\frac{1}{2}|+|x+\frac{1}{4}|\)

\(=|x+\frac{1}{2}|+|-x-\frac{1}{4}|\ge|x+\frac{1}{2}-x-\frac{1}{4}|\)

Hay \(F\ge\frac{1}{4}\)

Dấu "=" xảy ra\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(-x-\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}\ge0\\-x-\frac{1}{4}\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+\frac{1}{2}< 0\\-x-\frac{1}{4}< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{2}\\x\le\frac{-1}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x< \frac{-1}{2}\\x>\frac{-1}{4}\end{cases}}\)( loại )

\(\Leftrightarrow\frac{-1}{2}\le x\le\frac{-1}{4}\)

Đặt \(E=|y-\frac{1}{5}|\)

Vì \(|y-\frac{1}{5}|\ge0;\forall y\)

Dấu "=" xảy ra \(\Leftrightarrow|y-\frac{1}{5}|=0\)

                          \(\Leftrightarrow y=\frac{1}{5}\)

\(\Rightarrow F+E\ge\frac{1}{4}\)

Hay \(D\ge\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)

Vậy MIN \(D=\frac{1}{4}\)\(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)

31 tháng 7 2019

Chết mik nhầm câu d) phải là \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Dù sao mik cx cảm ơn bn[ OC ].Không khóc vì em

13 tháng 7 2015

sao giống bài thi quá vậy

13 tháng 7 2015

biết giải bài 2

x/12=y/14=x.y/12.24=98/288=49/144

=> x/12=49/144=> 49/12

=> y/14=49/144=> 343/72

mới lớp 2 thôi

19 tháng 8 2019

nhầm a, \(x^2+\left(9-\frac{1}{10}\right)^2=0\)

\(a;x^2+\left(9-\frac{1}{10}\right)^2=0\)

\(\Leftrightarrow x^2+\frac{89^2}{100}=0\)

\(\Leftrightarrow x^2=-\frac{7921}{100}\)

\(x^2\ge0\Rightarrow x\in\varnothing\)

7 tháng 12 2019

a, \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)\(\Rightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)\(\Rightarrow x=\frac{5}{6}\)

b, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)

\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)

Giải: \(\left(x-1\right)^4=1\)\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

c, Vì \(\left(x+20\right)^{100}\ge0\)\(\forall x\inℝ\)\(\left|y+4\right|\ge0\)\(\forall y\inℝ\)

\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\)\(\forall x,y\inℝ\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)

d, \(2^{x-1}=16\)\(\Rightarrow2^{x-1}=2^4\)=> x - 1 = 4 => x = 5 

11 tháng 10 2018

Do \(\left|a\right|\ge0\) nên:

a) \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\ge0\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\) (100 số hạng x)

\(\Leftrightarrow100x+5050=101x\Leftrightarrow201x=5050\Leftrightarrow x=\frac{5050}{201}\)

b) Đề sai nhé!

11 tháng 10 2018

Chết,nhầm ở câu cuối cùng của câu a) . Mình là ẩu thật :v. Sửa lại nhé:

\(\Leftrightarrow100x+\frac{5050}{101}=101x\Leftrightarrow100x+50=101x\Leftrightarrow201x=50\Leftrightarrow x=\frac{50}{201}\)