\(y=\dfrac{2x-1}{x^2+2x+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

mình nghĩ đề sai, chắc đề vậy mới đúng :))

\(y=\dfrac{2x+1}{x^2+2x+3}=\dfrac{-x^2-2x-3+x^2+4x+4}{x^2+2x+3}\)

\(y=\dfrac{x^2+4x+4}{x^2+2x+3}-1=\dfrac{\left(x+2\right)^2}{\left(x+1\right)^2+1}-1\ge-1\forall x\in R\)

dấu '=' xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

vậy \(y_{MIN}=-1\) khi x=-2

\(y=\dfrac{2x+1}{x^2+2x+3}=\dfrac{4x+2}{2\left(x^2+2x+3\right)}\)

\(y=\dfrac{x^2+2x+3-x^2+2x-1}{2\left(x^2+2x+3\right)}\)

\(y=\dfrac{-x^2+2x-1}{2\left(x^2+2x+3\right)}+\dfrac{1}{2}\)

\(y=\dfrac{-\left(x-1\right)^2}{2\left(x+1\right)^2+2}+\dfrac{1}{2}\le\dfrac{1}{2}\forall x\in R\)

dấu '=' xảy ra khi \(x-1=0\Leftrightarrow x=1\)

vậy \(y_{max}=\dfrac{1}{2}\) khi x=1

23 tháng 11 2018

\(Y=\dfrac{2x-1}{x^2+2x+3}\Leftrightarrow x^2.Y+x.\left(2Y-2\right)+3Y+1=0\)

\(\Delta'=\left(Y-1\right)^2-Y\left(3Y+1\right)\ge0\)

\(\Leftrightarrow\dfrac{-3-\sqrt{17}}{4}\le Y\le\dfrac{-3+\sqrt{17}}{4}\)

25 tháng 12 2018

Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0

=> C ≥ 0

Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7

C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4

Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5

25 tháng 12 2018

\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)

DD
20 tháng 1 2022

\(x^2+y^2\le2x+4y\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2\le5\)

Trong hệ tọa độ \(Oxy\)vẽ đường tròn \(\left(x-1\right)^2+\left(y-2\right)^2=5\)(C) và đường thẳng \(2x+y-F=0\)(d)

\(F=2x+y\)đạt GTNN hay GTLN khi (d) là tiếp tuyến của (C). 

\(I\left(1,2\right)\)là tâm của (C), \(R=\sqrt{5}\)là bán kính của (C).

\(d\left(I,d\right)=\frac{\left|2.1+2-F\right|}{\sqrt{2^2+1^2}}=\frac{\left|F-4\right|}{\sqrt{5}}=\sqrt{5}\Leftrightarrow\orbr{\begin{cases}F=-1\\F=9\end{cases}}\).

Vậy \(minF=-1,maxF=9\).

NV
23 tháng 11 2019

ĐKXĐ: \(x\ne0\)

\(y=\left(x+\frac{1}{x}\right)^2-2\left(x+\frac{1}{x}\right)+1\)

Đặt \(x+\frac{1}{x}=t\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-2\end{matrix}\right.\)

\(\Rightarrow y=t^2-2t+1\)

Xét hàm \(f\left(t\right)=t^2-2t+1\) trên \(D=(-\infty;-2]\cup[2;+\infty)\)

\(-\frac{b}{2a}=1\notin D\) ; \(f\left(-2\right)=9\) ; \(f\left(2\right)=1\)

\(\Rightarrow y_{min}=1\) khi \(t=2\Rightarrow x=1\)

\(y_{max}\) không tồn tại (parabol có hệ số \(a>0\) không tồn tại max)

28 tháng 4 2017

a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)

3 tháng 5 2017

a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)


2 tháng 4 2017

a) Công thức có nghĩa với x ∈ R sao cho 2x + 1 ≠ 0.

Vậy tập xác định của hàm số là:

D = { x ∈ R/2x + 1 ≠ 0} =

b) Tương tự như câu a), tập xác định của hàm số đã cho là:

D = { x ∈ R/x2 + 2x - 3 ≠ 0}

x2 + 2x – 3 = 0 ⇔ x = -3 hoặc x = 1

Vậy D = R {- 3; 1}.

c) có nghĩa với x ∈ R sao cho 2x + 1 ≥ 0

có nghĩa với x ∈ R sao cho 3 - x ≥ 0

Vậy tập xác định của hàm số là:

D = D1 ∩ D2, trong đó:

D1 = {x ∈ R/2x + 1 ≥ 0} =

D2 = {x ∈ R/3 - x ≥ 0} =


2 tháng 10 2017

mini của mày chịch nhau à hả cu

2 tháng 10 2017

phắn =="