K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2020

Bn dùng ct hạ bậc đưa hs về y = 3-cos2x rồi giải như bình thường là được.

10 tháng 6 2019

1. 4sin2x + 8cos2x-9=0

⇔ 4(sin2x+cos2x) + 4cos2x = 9

⇔ cos2x= \(\frac{9}{4}\)

⇔ cosx= \(\left[{}\begin{matrix}cosx=\frac{3}{2}\left(KTM\right)\\cosx=\frac{-3}{2}\left(KTM\right)\end{matrix}\right.\)

Vậy pt vô nghiệm

2.

1-5sinx + 2cos2x=0

⇔1- 5sinx + 2(1-sin2x)=0

⇔ 2sin2x + 5sinx -3 =0

\(\left[{}\begin{matrix}sinx=0,5\\sinx=-3\left(ktm\right)\end{matrix}\right.\)

Có sinx=0,5

⇔x=\(\left[{}\begin{matrix}x=\frac{\pi}{6}+2k\pi\\\frac{5\pi}{6}+2k\pi\end{matrix}\right.\left(k\in z\right)\)

10 tháng 6 2019

Bạn sửa lại giúp mình câu 2 chỗ x đó là dấu ngoặc nhọn nhé, không phải dấu ngoặc vuông. Mình bị nhầm.

NV
24 tháng 8 2020

\(y=\left(1-cos^2x\right)^2+cos^2x-5\)

\(y=cos^4x-cos^2x-4\)

\(y=\left(cos^2x-\frac{1}{2}\right)^2-\frac{17}{4}\ge-\frac{17}{4}\)

\(y_{min}=-\frac{17}{4}\) khi \(cos^2x=\frac{1}{2}\)

\(y=cos^2x\left(cos^2x-1\right)-4=-cos^2x.sin^2x-4=-\frac{1}{4}sin^22x-4\)

Do \(-\frac{1}{4}sin^22x\le0\Rightarrow y\le-4\)

\(y_{max}=-4\) khi \(sin2x=0\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

Ta có:

\(y=5-\sin ^2x\cos ^2x=5-\frac{1}{4}(2\sin x\cos x)^2=5-\frac{1}{4}\sin^2 2x\)

\(\sin 2x\in [-1;1], \forall x\in\mathbb{R}\Rightarrow \sin ^2x\in [0;1]\) hay \(0\leq \sin ^22x\leq 1\)

\(\Rightarrow 5-\frac{1}{4}.0\geq 5-\frac{1}{4}\sin ^22x\geq 5-\frac{1}{4}.1\)

\(\Leftrightarrow 5\geq y\geq \frac{19}{4}\)

Vậy \(\left\{\begin{matrix} y_{\max}=5\Leftrightarrow \sin 2x=0\\ y_{\min}=\frac{19}{4}\Leftrightarrow \sin 2x=\pm 1\end{matrix}\right.\)

NV
16 tháng 9 2020

\(y=sinx.cosx\left(sin^2x-cos^2x\right)=\frac{1}{2}sin2x.\left(-cos2x\right)=-\frac{1}{4}sin4x\)

Do \(-1\le sin4x\le1\Rightarrow-\frac{1}{4}\le y\le\frac{1}{4}\)

\(y_{min}=-\frac{1}{4}\) khi \(sin4x=1\)

\(y_{max}=\frac{1}{4}\) khi \(sin4x=-1\)