Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi m là 1 giá trị của biểu thức P, Khi đó hệ phương trình sau phải có nghiệm đối với x,y
\(\hept{\begin{cases}\frac{x^2}{9}+\frac{y^2}{16}=36\left(1\right)\\x-y+2004=m\left(2\right)\end{cases}}\)
Từ ( 2 ) suy ra y = x + 2004 - m
Thế vào ( 2 ),ta được : \(16x^2+9\left(x+2004-m\right)^2=144.36=5184\)
\(\Leftrightarrow25x^2+18\left(2004-m\right)x+9\left(2004-m\right)^2-5184=0\)( 3 )
Hệ PT có nghiệm khi PT ( 3 ) có nghiệm
\(\Rightarrow\Delta'=\left[9\left(2004-m\right)\right]^2-25\left[9\left(2004-m\right)^2-5184\right]\ge0\)
\(\Leftrightarrow\left(2004-m\right)^2\le900\Leftrightarrow-30\le2004-m\le30\)
\(\Leftrightarrow1974\le m\le2034\)
từ đó tìm được GTNN của P là 1974 khi \(x=\frac{-54}{5};y=\frac{96}{5}\)
GTLN của P là 2034 khi \(x=\frac{54}{5};y=\frac{-96}{5}\)
Từ giả thiết ta suy ra \(16x^2+9y^2=72^2.\) Theo bất đẳng thức Bunhia: \(36\times25=\left(\frac{x^2}{9}+\frac{y^2}{16}\right)\left(9+16\right)=\left(\frac{x^2}{9}+\frac{\left(-y\right)^2}{16}\right)\left(9+16\right)\ge\left(x-y\right)^2\to-30\le x-y\le30.\)
Do đó \(1985\le P\le2045\).
Khi \(x=\frac{54}{5},y=-\frac{96}{5}\to\) thỏa mãn điều kiện và \(P=2045.\)
Khi \(x=-\frac{54}{5},y=\frac{96}{5}\to\) thỏa mãn điều kiện và \(P=1985.\)
Vậy giá trị lớn nhất của \(P\) là \(2045\) và giá trị bé nhất là \(1985.\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
\(P-4=x-3y\Rightarrow\left(P-4\right)^2=\left(5.\frac{x}{5}+\left(-12\right).\frac{y}{4}\right)^2\le\left(5^2+12^2\right)\left(\frac{x^2}{25}+\frac{y^2}{16}\right)=13^2\)
\(\Rightarrow-13\le P-4\le13\)
\(\Rightarrow-9\le P\le17\)
\(P_{max}=17\) khi \(\left\{{}\begin{matrix}x=\frac{25}{13}\\y=-\frac{48}{13}\end{matrix}\right.\)
\(P_{min}=-9\) khi \(\left\{{}\begin{matrix}x=-\frac{25}{13}\\y=\frac{48}{13}\end{matrix}\right.\)
Dự đoán \(MinA=2\)khi \(x=y=z=\frac{1}{2}\)và \(MaxA=3\)khi x = y = z = 1. Ta sẽ chứng minh \(2\le\frac{x+y}{1+z}+\frac{y+z}{1+x}+\frac{z+x}{1+y}\le3\)
Đặt \(a=x+1;b=y+1;c=z+1\), khi đó ta được\(a,b,c\in\left[\frac{3}{2};2\right]\)
Bất đẳng thức cần chứng minh được viết lại là \(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)
#Trước hết ta chứng minh\(2\le\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\)\(\Leftrightarrow5\le\frac{a+b-2}{c}+1+\frac{b+c-2}{a}+1+\frac{c+a-2}{b}+1\)\(\Leftrightarrow5\le\left(a+b+c-2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Theo một đánh giá quen thuộc thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)nên ta quy bất đẳng thức cần chứng minh về dạng \(\left(a+b+c-2\right)\frac{9}{a+b+c}\ge5\)
Đặt \(a+b+c=s\)thì ta cần chứng minh \(\frac{9\left(s-2\right)}{s}\ge5\Leftrightarrow s\ge\frac{9}{2}\)*đúng vì \(a+b+c\ge\frac{3}{2}.3=\frac{9}{2}\)*
Vậy bất đẳng thức bên trái được chứng minh
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)
#Chứng minh \(\frac{a+b-2}{c}+\frac{b+c-2}{a}+\frac{c+a-2}{b}\le3\)
Không mất tính tổng quát, ta giả sử \(\frac{3}{2}\le a\le b\le c\le2\). Khi đó ta sẽ có\(\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{a}{2}+\frac{2}{a}\right)=\frac{\left(2-b\right)\left(a^2-2b\right)}{2ab}\le0\)hay \(\frac{a}{b}+\frac{b}{a}\le\frac{a}{2}+\frac{2}{a}\)
Hoàn toàn tương tự ta được \(\frac{b}{c}+\frac{c}{b}\le\frac{b}{2}+\frac{2}{b}\); \(\frac{a}{c}+\frac{c}{a}\le\frac{a}{2}+\frac{2}{a}\)
Cộng theo vế các bất đẳng thức trên ta được\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\le a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\)
Ta cần chứng minh\(a+\frac{4}{a}+\frac{b}{2}+\frac{2}{b}\le3+\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\Leftrightarrow a+\frac{2}{a}+\frac{b}{2}\le3+\frac{2}{c}\)
Bất đẳng thức cuối cùng là một bất đẳng thức đúng vì\(\hept{\begin{cases}a+\frac{2}{a}-3=\frac{\left(a-1\right)\left(a-2\right)}{a}\le0\Leftrightarrow a+\frac{2}{a}\le3\\\frac{b}{2}\le1\le\frac{2}{c}\end{cases}}\)
Vậy bất đẳng thức bên phải được chứng minh
Đẳng thức xảy ra khi a = b = c = 1