\(\frac{x^2}{9...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

https://olm.vn/hoi-dap/question/1117914.html

23 tháng 12 2017

a) MIN : \(y=\frac{\frac{1}{3}x^2+\frac{1}{3}x+\frac{1}{3}+\frac{2}{3}x^2-\frac{4}{3}x+\frac{2}{3}}{x^2+x+1}=\frac{\frac{1}{3}\left(x^2+x+1\right)+\frac{2}{3}\left(x^2-2x+1\right)}{x^2+x+1}\)

\(=\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\frac{1}{3}\)

MAX : \(y=\frac{3x^2+3x+3-2x^2-4x-2}{x^2+x+1}=\frac{3\left(x^2+x+1\right)-2\left(x^2+2x+1\right)}{x^2+x+1}\)

\(=3-\frac{2\left(x+1\right)^2}{x^2+x+1}\le3\)

b ) tương tự

25 tháng 12 2017

bạn ơi giải như thế không đúng vs lại dấu bằng không xảy ra

14 tháng 10 2019

a.\(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\sqrt{x}-1\ne0\\\sqrt{x}-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\ne0\\\sqrt{x}-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b.\(Q=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)(do \(x\sqrt{x}-1=\sqrt{x}^3-1=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\))

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

c.Để \(Q=\frac{2}{7}\) thì \(\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{2}{7}\)

\(\Leftrightarrow7\sqrt{x}=2x+2\sqrt{x}+2\)

\(\Leftrightarrow2x-5\sqrt{x}+2=0\)

\(\Leftrightarrow2x-4\sqrt{x}-\sqrt{x}+2=0\)

\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\2\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{1}{4}\end{matrix}\right.\)(Thỏa mãn đkxđ)

14 tháng 10 2019

Mk cảm ơn bn nha

14 tháng 1 2017

Ta có:

\(\hept{\begin{cases}mx+4y=9\\x+my=8\\2x+y+\frac{38}{m^2-4}=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=8-my\\m\left(8-my\right)+4y=9\\2\left(8-my\right)+y+\frac{38}{m^2-4}=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=8-my\\y\left(4-m^2\right)=9-8m\\2\left(8-my\right)+y+\frac{38}{m^2-4}=0\end{cases}}\)

dễ thấy m = 0 không phải nghiệm của hệ

\(\Leftrightarrow\hept{\begin{cases}x=8-my\\y=\frac{9-8m}{4-m^2}\\2\left(8-m.\frac{9-8m}{4-m^2}\right)+\frac{9-8m}{4-m^2}+\frac{38}{m^2-4}=3\left(3\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow3m^2-26m+23=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{23}{3}\end{cases}}\)

3 tháng 12 2016

Ta có: \(P=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2xy}{x-y}\)

\(=x-y+\frac{16}{x-y}\ge2.4=8\)

3 tháng 12 2016

Đặt \(t=x^2+y^2\) thì ta có : 

\(P^2=\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}=\frac{t^2}{t-16}=\frac{1}{\frac{t-16}{t^2}}=\frac{1}{-\frac{16}{t^2}+\frac{1}{t}}=\frac{1}{-16\left(\frac{1}{t}-\frac{1}{32}\right)^2+\frac{1}{64}}\ge\frac{1}{\frac{1}{64}}=64\)

\(\Rightarrow P\ge8\). Đẳng thức xảy ra khi \(\hept{\begin{cases}x^2+y^2=32\\xy=8\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2+2\sqrt{2}\\y=-2+2\sqrt{3}\end{cases}}\)