\(\frac{x^2-x+1}{x^2+x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

\(\Leftrightarrow Bx^2+Bx+B=x^2-x+1\)

\(\Leftrightarrow x^2\left(B-1\right)+x\left(B+1\right)+B-1=0\)

\(TH1:B=1\Rightarrow x=0\left(1\right)\)

\(TH2:B\ne1\)

\(\Delta=b^2-4ac=\left(B+1\right)^2-4\left(B-1\right)^2=-3B^2+10B-3\)

Để PT trên có nghiệm thì denta >=0

\(\Leftrightarrow-3B^2+10B-3\ge0\)

\(\Leftrightarrow\frac{1}{3}\le B\le3\left(2\right)\)

Từ (1) và (2) => * GTLN của B là 3

                          khi: x = -1 (Bạn tự tìm nha)

                           * GTNN của B là 1/3

                          khi: x = 1 (Bạn tự tìm luôn) 

                 ..................... HẾT .......................... 

24 tháng 2 2018

\(P=\frac{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge1.\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

27 tháng 8 2016

không có điều kiện à

Ukm

It's very hard

l can't do it 

Sorry!

 
30 tháng 12 2016

mấy bài như này hình như dùng miền giá trị được đó bạn

hộ mik nhé

tks bạn

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)